Bounds for exit times of Brownian motion and the first Dirichlet eigenvalue for the Laplacian
HTML articles powered by AMS MathViewer
- by Rodrigo Bañuelos, Phanuel Mariano and Jing Wang
- Trans. Amer. Math. Soc. 376 (2023), 5409-5432
- DOI: https://doi.org/10.1090/tran/8903
- Published electronically: April 3, 2023
- HTML | PDF | Request permission
Abstract:
For domains in $\mathbb {R}^d$, $d\geq 2$, we prove universal upper and lower bounds on the product of the bottom of the spectrum for the Laplacian to the power $p>0$ and the supremum over all starting points of the $p$-moments of the exit time of Brownian motion. It is shown that the lower bound is sharp for integer values of $p$ and that for $p \geq 1$, the upper bound is asymptotically sharp as $d\to \infty$. For all $p>0$, we prove the existence of an extremal domain among the class of domains that are convex and symmetric with respect to all coordinate axes. For this class of domains we conjecture that the cube is extremal.References
- Milton Abramowitz and Irene A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, No. 55, U. S. Government Printing Office, Washington, DC, 1964. For sale by the Superintendent of Documents. MR 167642
- M. Aizenman and B. Simon, Brownian motion and Harnack inequality for Schrödinger operators, Comm. Pure Appl. Math. 35 (1982), no. 2, 209–273. MR 644024, DOI 10.1002/cpa.3160350206
- Ben Andrews and Julie Clutterbuck, Proof of the fundamental gap conjecture, J. Amer. Math. Soc. 24 (2011), no. 3, 899–916. MR 2784332, DOI 10.1090/S0894-0347-2011-00699-1
- Catherine Bandle, Isoperimetric inequalities and applications, Monographs and Studies in Mathematics, vol. 7, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1980. MR 572958
- Rodrigo Bañuelos, Intrinsic ultracontractivity and eigenfunction estimates for Schrödinger operators, J. Funct. Anal. 100 (1991), no. 1, 181–206. MR 1124298, DOI 10.1016/0022-1236(91)90107-G
- Rodrigo Bañuelos and Pedro J. Méndez-Hernández, Symmetrization of Lévy processes and applications, J. Funct. Anal. 258 (2010), no. 12, 4026–4051. MR 2609537, DOI 10.1016/j.jfa.2010.02.013
- Rodrigo Bañuelos, On an estimate of Cranston and McConnell for elliptic diffusions in uniform domains, Probab. Theory Related Fields 76 (1987), no. 3, 311–323. MR 912657, DOI 10.1007/BF01297488
- Rodrigo Bañuelos and Krzysztof Burdzy, On the “hot spots” conjecture of J. Rauch, J. Funct. Anal. 164 (1999), no. 1, 1–33. MR 1694534, DOI 10.1006/jfan.1999.3397
- Rodrigo Bañuelos and Tom Carroll, Brownian motion and the fundamental frequency of a drum, Duke Math. J. 75 (1994), no. 3, 575–602. MR 1291697, DOI 10.1215/S0012-7094-94-07517-0
- Rodrigo Bañuelos and Burgess Davis, Heat kernel, eigenfunctions, and conditioned Brownian motion in planar domains, J. Funct. Anal. 84 (1989), no. 1, 188–200. MR 999496, DOI 10.1016/0022-1236(89)90118-3
- Rodrigo Bañuelos and Tadeusz Kulczycki, Spectral gap for the Cauchy process on convex, symmetric domains, Comm. Partial Differential Equations 31 (2006), no. 10-12, 1841–1878. MR 2273977, DOI 10.1080/03605300600856188
- Rodrigo Bañuelos, RafałLatała, and Pedro J. Méndez-Hernández, A Brascamp-Lieb-Luttinger-type inequality and applications to symmetric stable processes, Proc. Amer. Math. Soc. 129 (2001), no. 10, 2997–3008. MR 1840105, DOI 10.1090/S0002-9939-01-06137-8
- Rodrigo Bañuelos and Pedro J. Méndez-Hernández, Sharp inequalities for heat kernels of Schrödinger operators and applications to spectral gaps, J. Funct. Anal. 176 (2000), no. 2, 368–399. MR 1784420, DOI 10.1006/jfan.2000.3611
- Rodrigo Bañuelos, Michael Pang, and Mihai Pascu, Brownian motion with killing and reflection and the “hot-spots” problem, Probab. Theory Related Fields 130 (2004), no. 1, 56–68. MR 2092873, DOI 10.1007/s00440-003-0323-x
- Anup Biswas and József Lőrinczi, Universal constraints on the location of extrema of eigenfunctions of non-local Schrödinger operators, J. Differential Equations 267 (2019), no. 1, 267–306. MR 3944272, DOI 10.1016/j.jde.2019.01.007
- Bartłomiej Siudeja, Sharp bounds for eigenvalues of triangles, Michigan Math. J. 55 (2007), no. 2, 243–254. MR 2369934, DOI 10.1307/mmj/1187646992
- M. van den Berg, Spectral bounds for the torsion function, Integral Equations Operator Theory 88 (2017), no. 3, 387–400. MR 3682197, DOI 10.1007/s00020-017-2371-0
- M. van den Berg and Tom Carroll, Hardy inequality and $L^p$ estimates for the torsion function, Bull. Lond. Math. Soc. 41 (2009), no. 6, 980–986. MR 2575328, DOI 10.1112/blms/bdp075
- Maher Boudabra and Greg Markowsky, Maximizing the $p$th moment of the exit time of planar Brownian motion from a given domain, J. Appl. Probab. 57 (2020), no. 4, 1135–1149. MR 4179602, DOI 10.1017/jpr.2020.54
- Maher Boudabra and Greg Markowsky, On the finiteness of moments of the exit time of planar Brownian motion from comb domains, Ann. Fenn. Math. 46 (2021), no. 1, 527–536. MR 4277826, DOI 10.5186/aasfm.2021.4634
- Maher Boudabra and Greg Markowsky, Remarks on Gross’ technique for obtaining a conformal Skorohod embedding of planar Brownian motion, Electron. Commun. Probab. 25 (2020), Paper No. 20, 13. MR 4089727, DOI 10.1214/20-ecp300
- D. L. Burkholder, Distribution function inequalities for martingales, Ann. Probability 1 (1973), 19–42. MR 365692, DOI 10.1214/aop/1176997023
- H. J. Brascamp, Elliott H. Lieb, and J. M. Luttinger, A general rearrangement inequality for multiple integrals, J. Functional Analysis 17 (1974), 227–237. MR 346109, DOI 10.1016/0022-1236(74)90013-5
- Lorenzo Brasco and Berardo Ruffini, Compact Sobolev embeddings and torsion functions, Ann. Inst. H. Poincaré C Anal. Non Linéaire 34 (2017), no. 4, 817–843. MR 3661862, DOI 10.1016/j.anihpc.2016.05.005
- A. Burchard and M. Schmuckenschläger, Comparison theorems for exit times, Geom. Funct. Anal. 11 (2001), no. 4, 651–692. MR 1866798, DOI 10.1007/PL00001681
- M. W. Coffey, Expected exit times of Brownian motion from planar domains: complements to a paper of Markowsky, Preprint, arXiv:1203.5142, 2012.
- Don Colladay, Jeffrey J. Langford, and Patrick McDonald, Comparison results, exit time moments, and eigenvalues on Riemannian manifolds with a lower Ricci curvature bound, J. Geom. Anal. 28 (2018), no. 4, 3906–3927. MR 3881995, DOI 10.1007/s12220-018-0005-7
- Victor H. de la Peña and Patrick McDonald, Diffusions, exit time moments and Weierstrass theorems, Proc. Amer. Math. Soc. 132 (2004), no. 8, 2465–2474. MR 2052427, DOI 10.1090/S0002-9939-04-07196-5
- E. B. Davies, Heat kernels and spectral theory, Cambridge Tracts in Mathematics, vol. 92, Cambridge University Press, Cambridge, 1989. MR 990239, DOI 10.1017/CBO9780511566158
- Burgess Davis, On the spectral gap for fixed membranes, Ark. Mat. 39 (2001), no. 1, 65–74. MR 1821082, DOI 10.1007/BF02388791
- R. Dante DeBlassie, Exit times from cones in $\textbf {R}^n$ of Brownian motion, Probab. Theory Related Fields 74 (1987), no. 1, 1–29. MR 863716, DOI 10.1007/BF01845637
- Francesco Della Pietra, Nunzia Gavitone, and Serena Guarino Lo Bianco, On functionals involving the torsional rigidity related to some classes of nonlinear operators, J. Differential Equations 265 (2018), no. 12, 6424–6442. MR 3865117, DOI 10.1016/j.jde.2018.07.030
- Emily B. Dryden, Jeffrey J. Langford, and Patrick McDonald, Exit time moments and eigenvalue estimates, Bull. Lond. Math. Soc. 49 (2017), no. 3, 480–490. MR 3723632, DOI 10.1112/blms.12045
- Tiziana Giorgi and Robert G. Smits, Principal eigenvalue estimates via the supremum of torsion, Indiana Univ. Math. J. 59 (2010), no. 3, 987–1011. MR 2779069, DOI 10.1512/iumj.2010.59.3935
- Antoine Henrot, Ilaria Lucardesi, and Gérard Philippin, On two functionals involving the maximum of the torsion function, ESAIM Control Optim. Calc. Var. 24 (2018), no. 4, 1585–1604. MR 3922448, DOI 10.1051/cocv/2017069
- Antoine Henrot and Michel Pierre, Shape variation and optimization, EMS Tracts in Mathematics, vol. 28, European Mathematical Society (EMS), Zürich, 2018. A geometrical analysis; English version of the French publication [ MR2512810] with additions and updates. MR 3791463, DOI 10.4171/178
- Jeremy G. Hoskins and Stefan Steinerberger, Towards optimal gradient bounds for the torsion function in the plane, J. Geom. Anal. 31 (2021), no. 8, 7812–7841. MR 4293914, DOI 10.1007/s12220-020-00553-5
- A. Hurtado, S. Markvorsen, and V. Palmer, Estimates of the first Dirichlet eigenvalue from exit time moment spectra, Math. Ann. 365 (2016), no. 3-4, 1603–1632. MR 3521100, DOI 10.1007/s00208-015-1316-7
- David Jerison and Nikolai Nadirashvili, The “hot spots” conjecture for domains with two axes of symmetry, J. Amer. Math. Soc. 13 (2000), no. 4, 741–772. MR 1775736, DOI 10.1090/S0894-0347-00-00346-5
- Daesung Kim, Quantitative inequalities for the expected lifetime of Brownian motion, Michigan Math. J. 70 (2021), no. 3, 615–634. MR 4302556, DOI 10.1307/mmj/1593136867
- L. D. Landau and E. M. Lifshitz, Theory of elasticity, Course of Theoretical Physics, Vol. 7, Pergamon Press, London-Paris-Frankfurt; Addison-Wesley Publishing Company, Inc., Reading, MA, 1959. Translated by J. B. Sykes and W. H. Reid. MR 106584
- Lee Lorch, Some inequalities for the first positive zeros of Bessel functions, SIAM J. Math. Anal. 24 (1993), no. 3, 814–823. MR 1215440, DOI 10.1137/0524050
- Jianfeng Lu and Stefan Steinerberger, A dimension-free Hermite-Hadamard inequality via gradient estimates for the torsion function, Proc. Amer. Math. Soc. 148 (2020), no. 2, 673–679. MR 4052204, DOI 10.1090/proc/14843
- J. M. Luttinger, Generalized isoperimetric inequalities, Proc. Nat. Acad. Sci. U.S.A. 70 (1973), 1005–1006. MR 320556, DOI 10.1073/pnas.70.4.1005
- J. M. Luttinger, Generalized isoperimetric inequalities, J. Mathematical Phys. 14 (1973), 586–593. MR 337197, DOI 10.1063/1.1666363
- Phanuel Mariano and Hugo Panzo, Conformal Skorokhod embeddings and related extremal problems, Electron. Commun. Probab. 25 (2020), Paper No. 42, 11. MR 4112773, DOI 10.1214/20-ecp324
- Greg Markowsky, On the expected exit time of planar Brownian motion from simply connected domains, Electron. Commun. Probab. 16 (2011), 652–663. MR 2853103, DOI 10.1214/ECP.v16-1653
- Greg Markowsky, The exit time of planar Brownian motion and the Phragmén-Lindelöf principle, J. Math. Anal. Appl. 422 (2015), no. 1, 638–645. MR 3263480, DOI 10.1016/j.jmaa.2014.09.005
- Steen Markvorsen and Vicente Palmer, Torsional rigidity of minimal submanifolds, Proc. London Math. Soc. (3) 93 (2006), no. 1, 253–272. MR 2235949, DOI 10.1017/S0024611505015716
- Patrick McDonald, Exit times, moment problems and comparison theorems, Potential Anal. 38 (2013), no. 4, 1365–1372. MR 3042706, DOI 10.1007/s11118-012-9318-5
- Patrick McDonald and Robert Meyers, Dirichlet spectrum and heat content, J. Funct. Anal. 200 (2003), no. 1, 150–159. MR 1974092, DOI 10.1016/S0022-1236(02)00076-9
- Reed Meyerson and Patrick McDonald, Heat content determines planar triangles, Proc. Amer. Math. Soc. 145 (2017), no. 6, 2739–2748. MR 3626525, DOI 10.1090/proc/13397
- Joaquim Ortega-Cerdà and Bharti Pridhnani, The Pólya-Tchebotaröv problem, Harmonic analysis and partial differential equations, Contemp. Math., vol. 505, Amer. Math. Soc., Providence, RI, 2010, pp. 153–170. MR 2664566, DOI 10.1090/conm/505/09921
- Hugo Panzo, Spectral upper bound for the torsion function of symmetric stable processes, Proc. Amer. Math. Soc. 150 (2022), no. 3, 1241–1255. MR 4375718, DOI 10.1090/proc/15764
- Mihai N. Pascu, Scaling coupling of reflecting Brownian motions and the hot spots problem, Trans. Amer. Math. Soc. 354 (2002), no. 11, 4681–4702. MR 1926894, DOI 10.1090/S0002-9947-02-03020-9
- L. E. Payne, Bounds for solutions of a class of quasilinear elliptic boundary value problems in terms of the torsion function, Proc. Roy. Soc. Edinburgh Sect. A 88 (1981), no. 3-4, 251–265. MR 616778, DOI 10.1017/S0308210500020102
- G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematics Studies, No. 27, Princeton University Press, Princeton, NJ, 1951. MR 43486
- Alexander Yu. Solynin and Victor A. Zalgaller, The inradius, the first eigenvalue, and the torsional rigidity of curvilinear polygons, Bull. Lond. Math. Soc. 42 (2010), no. 5, 765–783. MR 2721739, DOI 10.1112/blms/bdq028
- René P. Sperb, Maximum principles and their applications, Mathematics in Science and Engineering, vol. 157, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 615561
- Giorgio Talenti, Elliptic equations and rearrangements, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1976), no. 4, 697–718. MR 601601
- Hendrik Vogt, $L_\infty$-estimates for the torsion function and $L_\infty$-growth of semigroups satisfying Gaussian bounds, Potential Anal. 51 (2019), no. 1, 37–47. MR 3981441, DOI 10.1007/s11118-018-9701-y
Bibliographic Information
- Rodrigo Bañuelos
- Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
- Email: banuelos@purdue.edu
- Phanuel Mariano
- Affiliation: Department of Mathematics, Union College, Schenectady, New York 12308
- MR Author ID: 1056562
- Email: marianop@union.edu
- Jing Wang
- Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
- Email: jingwang@purdue.edu
- Received by editor(s): February 19, 2022
- Received by editor(s) in revised form: October 26, 2022
- Published electronically: April 3, 2023
- Additional Notes: Research of the first author was supported in part by NSF Grant DMS-1854709
Research of the second author was supported in part by an AMS-Simons Travel Grant 2019-2023.
Research of the third author was supported in part by NSF Grant DMS-1855523 - © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 5409-5432
- MSC (2020): Primary 60J60, 35P15; Secondary 60J45, 58J65, 35J25, 49Q10
- DOI: https://doi.org/10.1090/tran/8903
- MathSciNet review: 4630749