New identities for theta operators
HTML articles powered by AMS MathViewer
- by Michele D’Adderio and Marino Romero;
- Trans. Amer. Math. Soc. 376 (2023), 5775-5807
- DOI: https://doi.org/10.1090/tran/8911
- Published electronically: May 9, 2023
- HTML | PDF | Request permission
Abstract:
In this article, we prove a new general identity involving the Theta operators introduced by the first author, Iraci, and Vanden Wyngaerd [Adv. Math. 376 (2021), p.59]. From this result, we can easily deduce several new identities that have combinatorial consequences in the study of Macdonald polynomials and diagonal coinvariants. In particular, we provide a unifying framework from which we recover many identities scattered in the literature, often resulting in drastically shorter proofs.References
- George E. Andrews, The theory of partitions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1998. Reprint of the 1976 original. MR 1634067
- F. Bergeron, A. M. Garsia, M. Haiman, and G. Tesler, Identities and positivity conjectures for some remarkable operators in the theory of symmetric functions, Methods Appl. Anal. 6 (1999), no. 3, 363–420. Dedicated to Richard A. Askey on the occasion of his 65th birthday, Part III. MR 1803316, DOI 10.4310/MAA.1999.v6.n3.a7
- Erik Carlsson and Anton Mellit, A proof of the shuffle conjecture, J. Amer. Math. Soc. 31 (2018), no. 3, 661–697. MR 3787405, DOI 10.1090/jams/893
- Michele D’Adderio and Alessandro Iraci, The new dinv is not so new, Electron. J. Combin. 26 (2019), no. 3, Paper No. 3.48, 24. MR 4014618, DOI 10.37236/8588
- Michele D’Adderio, Alessandro Iraci, and Anna Vanden Wyngaerd, The Schröder case of the generalized Delta conjecture, European J. Combin. 81 (2019), 58–83. MR 3949637, DOI 10.1016/j.ejc.2019.04.004
- Michele D’Adderio, Alessandro Iraci, and Anna Vanden Wyngaerd, Theta operators, refined delta conjectures, and coinvariants, Adv. Math. 376 (2021), Paper No. 107447, 59. MR 4178919, DOI 10.1016/j.aim.2020.107447
- Michele D’Adderio, Alessandro Iraci, and Anna Vanden Wyngaerd, The delta square conjecture, Int. Math. Res. Not. IMRN 1 (2021), 38–86. MR 4198493, DOI 10.1093/imrn/rnz057
- Michele D’Adderio, Alessandro Iraci, and Anna Vanden Wyngaerd, Decorated Dyck paths, polyominoes, and the delta conjecture, Mem. Amer. Math. Soc. 278 (2022), no. 1370, vii+119. MR 4429265, DOI 10.1090/memo/1370
- Michele D’Adderio and Anton Mellit, A proof of the compositional delta conjecture, Adv. Math. 402 (2022), Paper No. 108342, 17. MR 4401822, DOI 10.1016/j.aim.2022.108342
- Adriano M. Garsia and Mark Haiman, A graded representation model for Macdonald’s polynomials, Proc. Nat. Acad. Sci. U.S.A. 90 (1993), no. 8, 3607–3610. MR 1214091, DOI 10.1073/pnas.90.8.3607
- A. M. Garsia and M. Haiman, A remarkable $q,t$-Catalan sequence and $q$-Lagrange inversion, J. Algebraic Combin. 5 (1996), no. 3, 191–244. MR 1394305, DOI 10.1023/A:1022476211638
- A. M. Garsia and J. Haglund, A proof of the $q,t$-Catalan positivity conjecture, Discrete Math. 256 (2002), no. 3, 677–717. LaCIM 2000 Conference on Combinatorics, Computer Science and Applications (Montreal, QC). MR 1935784, DOI 10.1016/S0012-365X(02)00343-6
- A. Garsia, J. Haglund, and M. Romero, Some new symmetric function tools and their applications, J. Comb. 10 (2019), no. 4, 655–674. MR 3983743, DOI 10.4310/JOC.2019.v10.n4.a3
- Adriano Garsia, Angela Hicks, and Andrew Stout, The case $k=2$ of the shuffle conjecture, J. Comb. 2 (2011), no. 2, 193–229. MR 2913193, DOI 10.4310/JOC.2011.v2.n2.a2
- A. M. Garsia, M. Haiman, and G. Tesler, Explicit plethystic formulas for Macdonald $q,t$-Kostka coefficients, Sém. Lothar. Combin. 42 (1999), Art. B42m, 45. The Andrews Festschrift (Maratea, 1998). MR 1701592
- Adriano Garsia and Anton Mellit, Five-term relation and Macdonald polynomials, J. Combin. Theory Ser. A 163 (2019), 182–194. MR 3885219, DOI 10.1016/j.jcta.2018.12.003
- J. Haglund, A proof of the $q,t$-Schröder conjecture, Int. Math. Res. Not. 11 (2004), 525–560. MR 2038776, DOI 10.1155/S1073792804132509
- James Haglund, The $q$,$t$-Catalan numbers and the space of diagonal harmonics, University Lecture Series, vol. 41, American Mathematical Society, Providence, RI, 2008. With an appendix on the combinatorics of Macdonald polynomials. MR 2371044, DOI 10.1007/s10711-008-9270-0
- Mark Haiman, Vanishing theorems and character formulas for the Hilbert scheme of points in the plane, Invent. Math. 149 (2002), no. 2, 371–407. MR 1918676, DOI 10.1007/s002220200219
- J. Haglund, M. Haiman, N. Loehr, J. B. Remmel, and A. Ulyanov, A combinatorial formula for the character of the diagonal coinvariants, Duke Math. J. 126 (2005), no. 2, 195–232. MR 2115257, DOI 10.1215/S0012-7094-04-12621-1
- J. Haglund, J. Morse, and M. Zabrocki, A compositional shuffle conjecture specifying touch points of the Dyck path, Canad. J. Math. 64 (2012), no. 4, 822–844. MR 2957232, DOI 10.4153/CJM-2011-078-4
- James Haglund, Brendon Rhoades, and Mark Shimozono, Ordered set partitions, generalized coinvariant algebras, and the delta conjecture, Adv. Math. 329 (2018), 851–915. MR 3783430, DOI 10.1016/j.aim.2018.01.028
- James Haglund, Brendon Rhoades, and Mark Shimozono, Hall-Littlewood expansions of Schur delta operators at $t=0$, Sém. Lothar. Combin. 79 ([2018–2023]), Art. B79c, 20. MR 3932967
- J. Haglund, J. B. Remmel, and A. T. Wilson, The delta conjecture, Trans. Amer. Math. Soc. 370 (2018), no. 6, 4029–4057. MR 3811519, DOI 10.1090/tran/7096
- Alessandro Iraci and Anna Vanden Wyngaerd, A valley version of the delta square conjecture, Ann. Comb. 25 (2021), no. 1, 195–227. MR 4233517, DOI 10.1007/s00026-021-00525-8
- Alessandro Iraci and Anna Vanden Wyngaerd, Pushing our way from the valley Delta to the generalised valley Delta, Algebr. Comb. 5 (2022), no. 4, 715–725. MR 4484456, DOI 10.5802/alco.239
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
- Dun Qiu and Andrew Timothy Wilson, The valley version of the extended delta conjecture, J. Combin. Theory Ser. A 175 (2020), 105271, 31. MR 4099465, DOI 10.1016/j.jcta.2020.105271
- Richard P. Stanley, Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62, Cambridge University Press, Cambridge, 1999. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin. MR 1676282, DOI 10.1017/CBO9780511609589
- M. Zabrocki, A module for the delta conjecture, arXiv:1902:08966.
Bibliographic Information
- Michele D’Adderio
- Affiliation: Dipartimento di Matematica, Università di Pisa, Largo Bruno Pontecorvo 5, 56127 Pisa, Italy
- MR Author ID: 861645
- Email: michele.dadderio@unipi.it
- Marino Romero
- Affiliation: Department of Mathematics, University of Pennsylvania, David Rittenhouse Lab., 209 South 33rd Street, Philadelphia, Pennsylvania 19104-6395
- MR Author ID: 1173529
- Email: mar007@sas.upenn.edu
- Received by editor(s): January 7, 2021
- Received by editor(s) in revised form: February 2, 2023
- Published electronically: May 9, 2023
- Additional Notes: The first author was partially supported by the Fonds Thelam project J1150080.
The second author was partially supported by the University of California President’s Postdoctoral Fellowship. - © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 5775-5807
- MSC (2020): Primary 05E05; Secondary 20C30
- DOI: https://doi.org/10.1090/tran/8911
- MathSciNet review: 4630759