Initial traces and solvability for a semilinear heat equation on a half space of $\mathbb {R}^N$
HTML articles powered by AMS MathViewer
- by Kotaro Hisa, Kazuhiro Ishige and Jin Takahashi;
- Trans. Amer. Math. Soc. 376 (2023), 5731-5773
- DOI: https://doi.org/10.1090/tran/8922
- Published electronically: May 9, 2023
- HTML | PDF | Request permission
Abstract:
We show the existence and the uniqueness of initial traces of nonnegative solutions to a semilinear heat equation on a half space of $\mathbb {R}^N$ under the zero Dirichlet boundary condition. Furthermore, we obtain necessary conditions and sufficient conditions on the initial data for the solvability of the corresponding Cauchy–Dirichlet problem. Our necessary conditions and sufficient conditions are sharp and enable us to find optimal singularities of initial data for the solvability of the Cauchy–Dirichlet problem.References
- Goro Akagi, Kazuhiro Ishige, and Ryuichi Sato, The Cauchy problem for the Finsler heat equation, Adv. Calc. Var. 13 (2020), no. 3, 257–278. MR 4116616, DOI 10.1515/acv-2017-0048
- D. Andreucci and E. DiBenedetto, On the Cauchy problem and initial traces for a class of evolution equations with strongly nonlinear sources, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 18 (1991), no. 3, 363–441. MR 1145316
- D. G. Aronson, Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 22 (1968), 607–694. MR 435594
- D. G. Aronson and L. A. Caffarelli, The initial trace of a solution of the porous medium equation, Trans. Amer. Math. Soc. 280 (1983), no. 1, 351–366. MR 712265, DOI 10.1090/S0002-9947-1983-0712265-1
- Pierre Baras and Michel Pierre, Critère d’existence de solutions positives pour des équations semi-linéaires non monotones, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), no. 3, 185–212 (French, with English summary). MR 797270, DOI 10.1016/s0294-1449(16)30402-4
- Philippe Bénilan, Michael G. Crandall, and Michel Pierre, Solutions of the porous medium equation in $\textbf {R}^{N}$ under optimal conditions on initial values, Indiana Univ. Math. J. 33 (1984), no. 1, 51–87. MR 726106, DOI 10.1512/iumj.1984.33.33003
- Marie-Françoise Bidaut-Véron, Emmanuel Chasseigne, and Laurent Véron, Initial trace of solutions of some quasilinear parabolic equations with absorption, J. Funct. Anal. 193 (2002), no. 1, 140–205. MR 1923632, DOI 10.1006/jfan.2002.3912
- Matteo Bonforte, Yannick Sire, and Juan Luis Vázquez, Optimal existence and uniqueness theory for the fractional heat equation, Nonlinear Anal. 153 (2017), 142–168. MR 3614666, DOI 10.1016/j.na.2016.08.027
- Haïm Brezis and Thierry Cazenave, A nonlinear heat equation with singular initial data, J. Anal. Math. 68 (1996), 277–304. MR 1403259, DOI 10.1007/BF02790212
- Keng Deng and Howard A. Levine, The role of critical exponents in blow-up theorems: the sequel, J. Math. Anal. Appl. 243 (2000), no. 1, 85–126. MR 1742850, DOI 10.1006/jmaa.1999.6663
- E. DiBenedetto and M. A. Herrero, On the Cauchy problem and initial traces for a degenerate parabolic equation, Trans. Amer. Math. Soc. 314 (1989), no. 1, 187–224. MR 962278, DOI 10.1090/S0002-9947-1989-0962278-5
- E. DiBenedetto and M. A. Herrero, Nonnegative solutions of the evolution $p$-Laplacian equation. Initial traces and Cauchy problem when $1<p<2$, Arch. Rational Mech. Anal. 111 (1990), no. 3, 225–290. MR 1066761, DOI 10.1007/BF00400111
- Lawrence C. Evans and Ronald F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. MR 1158660
- Yohei Fujishima and Kazuhiro Ishige, Initial traces and solvability of Cauchy problem to a semilinear parabolic system, J. Math. Soc. Japan 73 (2021), no. 4, 1187–1219. MR 4329026, DOI 10.2969/jmsj/84728472
- Yohei Fujishima and Kazuhiro Ishige, Optimal singularities of initial functions for solvability of a semilinear parabolic system, J. Math. Soc. Japan 74 (2022), no. 2, 591–627. MR 4410322, DOI 10.2969/jmsj/86058605
- Yohei Fujishima, Kotaro Hisa, Kazuhiro Ishige, and Robert Laister, Solvability of superlinear fractional parabolic equations, J. Evol. Equ. 23 (2023), no. 1, Paper No. 4, 38. MR 4520263, DOI 10.1007/s00028-022-00853-z
- Yohei Fujishima and Norisuke Ioku, Existence and nonexistence of solutions for the heat equation with a superlinear source term, J. Math. Pures Appl. (9) 118 (2018), 128–158 (English, with English and French summaries). MR 3852471, DOI 10.1016/j.matpur.2018.08.001
- Yoshikazu Giga and Robert V. Kohn, Nondegeneracy of blowup for semilinear heat equations, Comm. Pure Appl. Math. 42 (1989), no. 6, 845–884. MR 1003437, DOI 10.1002/cpa.3160420607
- Miguel A. Herrero and Michel Pierre, The Cauchy problem for $u_t=\Delta u^m$ when $0<m<1$, Trans. Amer. Math. Soc. 291 (1985), 145–158., DOI 10.1090/S0002-9947-1985-0797051-0
- Kotaro Hisa and Kazuhiro Ishige, Existence of solutions for a fractional semilinear parabolic equation with singular initial data, Nonlinear Anal. 175 (2018), 108–132. MR 3830724, DOI 10.1016/j.na.2018.05.011
- Kotaro Hisa and Kazuhiro Ishige, Solvability of the heat equation with a nonlinear boundary condition, SIAM J. Math. Anal. 51 (2019), no. 1, 565–594. MR 3916953, DOI 10.1137/17M1131416
- Kotaro Hisa, Kazuhiro Ishige, and Jin Takahashi, Existence of solutions for an inhomogeneous fractional semilinear heat equation, Nonlinear Anal. 199 (2020), 111920, 28. MR 4099496, DOI 10.1016/j.na.2020.111920
- Kotaro Hisa and Mikołaj Sierżęga, Existence and nonexistence of solutions to the Hardy parabolic equation, arXiv:2102.04079.
- Kotaro Hisa and Jin Takahashi, Optimal singularities of initial data for solvability of the Hardy parabolic equation, J. Differential Equations 296 (2021), 822–848. MR 4278116, DOI 10.1016/j.jde.2021.06.011
- Kazuhiro Ishige, On the existence of solutions of the Cauchy problem for a doubly nonlinear parabolic equation, SIAM J. Math. Anal. 27 (1996), no. 5, 1235–1260. MR 1402438, DOI 10.1137/S0036141094270370
- Kazuhiro Ishige, Tatsuki Kawakami, and Shinya Okabe, Existence of solutions for a higher-order semilinear parabolic equation with singular initial data, Ann. Inst. H. Poincaré C Anal. Non Linéaire 37 (2020), no. 5, 1185–1209. MR 4138231, DOI 10.1016/j.anihpc.2020.04.002
- Kazuhiro Ishige, Tatsuki Kawakami, and Shinya Okabe, Existence of solutions to nonlinear parabolic equations via majorant integral kernel, Nonlinear Anal. 223 (2022), Paper No. 113025, 22. MR 4444762, DOI 10.1016/j.na.2022.113025
- Kazuhiro Ishige, Tatsuki Kawakami, and Mikołaj Sierżȩga, Supersolutions for a class of nonlinear parabolic systems, J. Differential Equations 260 (2016), no. 7, 6084–6107. MR 3456827, DOI 10.1016/j.jde.2015.12.031
- Kazuhiro Ishige and Juha Kinnunen, Initial trace for a doubly nonlinear parabolic equation, J. Evol. Equ. 11 (2011), no. 4, 943–957. MR 2861313, DOI 10.1007/s00028-011-0119-x
- Kazuhiro Ishige and Ryuichi Sato, Heat equation with a nonlinear boundary condition and uniformly local $L^r$ spaces, Discrete Contin. Dyn. Syst. 36 (2016), no. 5, 2627–2652. MR 3485411, DOI 10.3934/dcds.2016.36.2627
- Kazuhiro Ishige and Ryuichi Sato, Heat equation with a nonlinear boundary condition and growing initial data, Differential Integral Equations 30 (2017), no. 7-8, 481–504. MR 3646460
- Hideo Kozono and Masao Yamazaki, Semilinear heat equations and the Navier-Stokes equation with distributions in new function spaces as initial data, Comm. Partial Differential Equations 19 (1994), no. 5-6, 959–1014. MR 1274547, DOI 10.1080/03605309408821042
- R. Laister, J. C. Robinson, M. Sierżęga, and A. Vidal-López, A complete characterisation of local existence for semilinear heat equations in Lebesgue spaces, Ann. Inst. H. Poincaré C Anal. Non Linéaire 33 (2016), no. 6, 1519–1538. MR 3569241, DOI 10.1016/j.anihpc.2015.06.005
- R. Laister and M. Sierżęga, Well-posedness of semilinear heat equations in $L^1$, Ann. Inst. H. Poincaré C Anal. Non Linéaire 37 (2020), no. 3, 709–725. MR 4093618, DOI 10.1016/j.anihpc.2019.12.001
- Robert Laister and Mikołaj Sierżęga, A blow-up dichotomy for semilinear fractional heat equations, Math. Ann. 381 (2021), no. 1-2, 75–90. MR 4322607, DOI 10.1007/s00208-020-02078-2
- Howard A. Levine, The role of critical exponents in blowup theorems, SIAM Rev. 32 (1990), no. 2, 262–288. MR 1056055, DOI 10.1137/1032046
- Howard A. Levine and Peter Meier, A blowup result for the critical exponent in cones, Israel J. Math. 67 (1989), no. 2, 129–136. MR 1026558, DOI 10.1007/BF02937290
- Habib Mâagli, Syrine Masmoudi, and Malek Zribi, On a parabolic problem with nonlinear term in a half space and global behavior of solutions, J. Differential Equations 246 (2009), no. 9, 3417–3447. MR 2515162, DOI 10.1016/j.jde.2007.11.003
- Moshe Marcus and Laurent Véron, Initial trace of positive solutions of some nonlinear parabolic equations, Comm. Partial Differential Equations 24 (1999), no. 7-8, 1445–1499. MR 1697494, DOI 10.1080/03605309908821471
- Moshe Marcus and Laurent Véron, Semilinear parabolic equations with measure boundary data and isolated singularities, J. Anal. Math. 85 (2001), 245–290. MR 1869611, DOI 10.1007/BF02788083
- Moshe Marcus and Laurent Véron, Initial trace of positive solutions to semilinear parabolic inequalities, Adv. Nonlinear Stud. 2 (2002), no. 4, 395–436. MR 1936045, DOI 10.1515/ans-2002-0404
- Júlia Matos and Philippe Souplet, Universal blow-up rates for a semilinear heat equation and applications, Adv. Differential Equations 8 (2003), no. 5, 615–639. MR 1972493
- Peter Meier, Blow-up of solutions of semilinear parabolic differential equations, Z. Angew. Math. Phys. 39 (1988), no. 2, 135–149 (English, with German summary). MR 937698, DOI 10.1007/BF00945760
- Yasuhito Miyamoto, A doubly critical semilinear heat equation in the $L^1$ space, J. Evol. Equ. 21 (2021), no. 1, 151–166. MR 4238200, DOI 10.1007/s00028-020-00573-2
- Pavol Quittner and Philippe Souplet, Superlinear parabolic problems, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser/Springer, Cham, 2019. Blow-up, global existence and steady states; Second edition of [ MR2346798]. MR 3967048, DOI 10.1007/978-3-030-18222-9
- James C. Robinson and Mikołaj Sierżęga, Supersolutions for a class of semilinear heat equations, Rev. Mat. Complut. 26 (2013), no. 2, 341–360. MR 3068603, DOI 10.1007/s13163-012-0108-9
- Jin Takahashi, Solvability of a semilinear parabolic equation with measures as initial data, Geometric properties for parabolic and elliptic PDE’s, Springer Proc. Math. Stat., vol. 176, Springer, [Cham], 2016, pp. 257–276. MR 3571832, DOI 10.1007/978-3-319-41538-3_{1}5
- Slim Tayachi and Fred B. Weissler, The nonlinear heat equation with high order mixed derivatives of the Dirac delta as initial values, Trans. Amer. Math. Soc. 366 (2014), no. 1, 505–530. MR 3118404, DOI 10.1090/S0002-9947-2013-05894-1
- Fred B. Weissler, Local existence and nonexistence for semilinear parabolic equations in $L^{p}$, Indiana Univ. Math. J. 29 (1980), no. 1, 79–102. MR 554819, DOI 10.1512/iumj.1980.29.29007
- Fred B. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation, Israel J. Math. 38 (1981), no. 1-2, 29–40. MR 599472, DOI 10.1007/BF02761845
- D. V. Widder, Positive temperatures on an infinite rod, Trans. Amer. Math. Soc. 55 (1944), 85–95. MR 9795, DOI 10.1090/S0002-9947-1944-0009795-2
- Zhao Junning, On the Cauchy problem and initial traces for the evolution $p$-Laplacian equations with strongly nonlinear sources, J. Differential Equations 121 (1995), no. 2, 329–383. MR 1354313, DOI 10.1006/jdeq.1995.1132
- Junning Zhao and Zhonghai Xu, Cauchy problem and initial traces for a doubly nonlinear degenerate parabolic equation, Sci. China Ser. A 39 (1996), no. 7, 673–684. MR 1417879
Bibliographic Information
- Kotaro Hisa
- Affiliation: Mathematical Institute, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
- MR Author ID: 1279399
- Email: kotaro.hisa.d5@tohoku.ac.jp
- Kazuhiro Ishige
- Affiliation: Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan
- MR Author ID: 357333
- Email: ishige@ms.u-tokyo.ac.jp
- Jin Takahashi
- Affiliation: Department of Mathematical and Computing Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
- MR Author ID: 1083499
- Email: takahashi@c.titech.ac.jp
- Received by editor(s): September 16, 2022
- Received by editor(s) in revised form: January 25, 2023
- Published electronically: May 9, 2023
- Additional Notes: The first and second authors were supported in part by JSPS KAKENHI Grant Number JP19H05599. The third author was supported in part by JSPS KAKENHI Grant Numbers JP19K14567 and JP22H01131.
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 5731-5773
- MSC (2020): Primary 35K58; Secondary 35A01, 35A21, 35K20
- DOI: https://doi.org/10.1090/tran/8922
- MathSciNet review: 4630758