Quantitative decompositions of Lipschitz mappings into metric spaces
HTML articles powered by AMS MathViewer
- by Guy C. David and Raanan Schul;
- Trans. Amer. Math. Soc. 376 (2023), 5521-5571
- DOI: https://doi.org/10.1090/tran/8930
- Published electronically: May 19, 2023
- HTML | PDF
Abstract:
We study the quantitative properties of Lipschitz mappings from Euclidean spaces into metric spaces. We prove that it is always possible to decompose the domain of such a mapping into pieces on which the mapping “behaves like a projection mapping” along with a “garbage set” that is arbitrarily small in an appropriate sense. Moreover, our control is quantitative, i.e., independent of both the particular mapping and the metric space it maps into. This improves a theorem of Azzam-Schul from the paper “Hard Sard”, and answers a question left open in that paper. The proof uses ideas of quantitative differentiation, as well as a detailed study of how to supplement Lipschitz mappings by additional coordinates to form bi-Lipschitz mappings.References
- Jonas Azzam and Raanan Schul, Hard Sard: quantitative implicit function and extension theorems for Lipschitz maps, Geom. Funct. Anal. 22 (2012), no. 5, 1062–1123. MR 2989430, DOI 10.1007/s00039-012-0189-0
- Jonas Azzam and Raanan Schul, A quantitative metric differentiation theorem, Proc. Amer. Math. Soc. 142 (2014), no. 4, 1351–1357. MR 3162255, DOI 10.1090/S0002-9939-2014-11874-0
- Guy David, Morceaux de graphes lipschitziens et intégrales singulières sur une surface, Rev. Mat. Iberoamericana 4 (1988), no. 1, 73–114 (French). MR 1009120, DOI 10.4171/RMI/64
- Guy David, Wavelets and singular integrals on curves and surfaces, Lecture Notes in Mathematics, vol. 1465, Springer-Verlag, Berlin, 1991. MR 1123480, DOI 10.1007/BFb0091544
- G. David and S. Semmes, Regular mappings between dimensions, Publ. Mat. 44 (2000), no. 2, 369–417. MR 1800814, DOI 10.5565/PUBLMAT_{4}4200_{0}2
- Guy C. David, Bi-Lipschitz pieces between manifolds, Rev. Mat. Iberoam. 32 (2016), no. 1, 175–218. MR 3470666, DOI 10.4171/RMI/883
- Guy C. David and Kyle Kinneberg, Lipschitz and bi-Lipschitz maps from PI spaces to Carnot groups, Indiana Univ. Math. J. 69 (2020), no. 5, 1685–1731. MR 4151334, DOI 10.1512/iumj.2020.69.8009
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 257325
- PawełGoldstein, Piotr Hajłasz, and Pekka Pankka, Topologically nontrivial counterexamples to Sard’s theorem, Int. Math. Res. Not. IMRN 20 (2020), 7073–7096. MR 4172678, DOI 10.1093/imrn/rny179
- Piotr Hajłasz and Scott Zimmerman, An implicit function theorem for Lipschitz mappings into metric space, Indiana Univ. Math. J. 69 (2020), no. 1, 205–228. MR 4077161, DOI 10.1512/iumj.2020.69.8343
- Juha Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001. MR 1800917, DOI 10.1007/978-1-4613-0131-8
- Peter W. Jones, Lipschitz and bi-Lipschitz functions, Rev. Mat. Iberoamericana 4 (1988), no. 1, 115–121. MR 1009121, DOI 10.4171/RMI/65
- R. Kaufman, A singular map of a cube onto a square, J. Differential Geometry 14 (1979), no. 4, 593–594 (1981). MR 600614, DOI 10.4310/jdg/1214435238
- Kyle Kinneberg, Discrete length-volume inequalities and lower volume bounds in metric spaces, Math. Z. 282 (2016), no. 3-4, 747–768. MR 3473642, DOI 10.1007/s00209-015-1563-z
- Bernd Kirchheim, Rectifiable metric spaces: local structure and regularity of the Hausdorff measure, Proc. Amer. Math. Soc. 121 (1994), no. 1, 113–123. MR 1189747, DOI 10.1090/S0002-9939-1994-1189747-7
- Enrico Le Donne, Sean Li, and Tapio Rajala, Ahlfors-regular distances on the Heisenberg group without biLipschitz pieces, Proc. Lond. Math. Soc. (3) 115 (2017), no. 2, 348–380. MR 3684108, DOI 10.1112/plms.12044
- Sean Li, BiLipschitz decomposition of Lipschitz maps between Carnot groups, Anal. Geom. Metr. Spaces 3 (2015), no. 1, 231–243. MR 3393359, DOI 10.1515/agms-2015-0014
- William Meyerson, Lipschitz and bilipschitz maps on Carnot groups, Pacific J. Math. 263 (2013), no. 1, 143–170. MR 3069079, DOI 10.2140/pjm.2013.263.143
- Raanan Schul, Bi-Lipschitz decomposition of Lipschitz functions into a metric space, Rev. Mat. Iberoam. 25 (2009), no. 2, 521–531. MR 2554164, DOI 10.4171/RMI/574
- Stephen Semmes, Measure-preserving quality within mappings, Rev. Mat. Iberoamericana 16 (2000), no. 2, 363–458. MR 1809345, DOI 10.4171/RMI/279
- Stefan Wenger and Robert Young, Lipschitz homotopy groups of the Heisenberg groups, Geom. Funct. Anal. 24 (2014), no. 1, 387–402. MR 3177387, DOI 10.1007/s00039-014-0264-9
- Roger Züst, Some results on maps that factor through a tree, Anal. Geom. Metr. Spaces 3 (2015), no. 1, 73–92. MR 3331701, DOI 10.1515/agms-2015-0005
Bibliographic Information
- Guy C. David
- Affiliation: Department of Mathematical Sciences, Ball State University, Muncie, Indiana 47306
- MR Author ID: 1103461
- ORCID: 0000-0002-0652-6658
- Email: gcdavid@bsu.edu
- Raanan Schul
- Affiliation: Department of Mathematics, Stony Brook University, Stony Brook, New York 11794-3651
- MR Author ID: 818001
- Email: schul@math.sunysb.edu
- Received by editor(s): March 1, 2021
- Received by editor(s) in revised form: December 12, 2022
- Published electronically: May 19, 2023
- Additional Notes: The first author was partially supported by the National Science Foundation under Grants No. DMS-1758709 and DMS-2054004
The second author was partially supported by the National Science Foundation under Grant No. DMS-1763973. - © Copyright 2023 by the authors
- Journal: Trans. Amer. Math. Soc. 376 (2023), 5521-5571
- MSC (2020): Primary 28A75; Secondary 53C23, 30L99
- DOI: https://doi.org/10.1090/tran/8930
- MathSciNet review: 4630753