Projections of orbital measures and quantum marginal problems
HTML articles powered by AMS MathViewer
- by Benoît Collins and Colin McSwiggen;
- Trans. Amer. Math. Soc. 376 (2023), 5601-5640
- DOI: https://doi.org/10.1090/tran/8931
- Published electronically: May 23, 2023
- HTML | PDF | Request permission
Abstract:
This paper studies projections of uniform random elements of (co)adjoint orbits of compact Lie groups. Such projections generalize several widely studied ensembles in random matrix theory, including the randomized Horn’s problem, the randomized Schur’s problem, and the orbital corners process. In this general setting, we prove integral formulae for the probability densities, establish some properties of the densities, and discuss connections to multiplicity problems in representation theory as well as to known results in the symplectic geometry literature. As applications, we show a number of results on marginal problems in quantum information theory and also prove an integral formula for restriction multiplicities.References
- J.-P. Anker, An introduction to Dunkl theory and its analytic aspects, Analytic, Algebraic and Geometric Aspects of Differential Equations, Filipuk, G., Haraoka, Y., Michalik, S. eds., Basel: Birkhäuser (2015), 3–58, arXiv:1611.08213
- Yu. Baryshnikov, GUEs and queues, Probab. Theory Related Fields 119 (2001), no. 2, 256–274. MR 1818248, DOI 10.1007/PL00008760
- Serban Belinschi, Alice Guionnet, and Jiaoyang Huang, Large deviation principles via spherical integrals, Probab. Math. Phys. 3 (2022), no. 3, 543–625. MR 4520314, DOI 10.2140/pmp.2022.3.543
- Arkady Berenstein and Reyer Sjamaar, Coadjoint orbits, moment polytopes, and the Hilbert-Mumford criterion, J. Amer. Math. Soc. 13 (2000), no. 2, 433–466. MR 1750957, DOI 10.1090/S0894-0347-00-00327-1
- E. Bianchi, L. Hackl, M. Kieburg, M. Rigol, and L. Vidmar, Volume-law entanglement entropy of typical pure quantum states, PRX Quantum 3 (2022), 030201, arXiv:2112.06959.
- Philippe Biane, Representations of unitary groups and free convolution, Publ. Res. Inst. Math. Sci. 31 (1995), no. 1, 63–79. MR 1317523, DOI 10.2977/prims/1195164791
- Carlton M. Caves, Christopher A. Fuchs, and Rüdiger Schack, Unknown quantum states: the quantum de Finetti representation, J. Math. Phys. 43 (2002), no. 9, 4537–4559. Quantum information theory. MR 1924454, DOI 10.1063/1.1494475
- Matthias Christandl, Robert König, Graeme Mitchison, and Renato Renner, One-and-a-half quantum de Finetti theorems, Comm. Math. Phys. 273 (2007), no. 2, 473–498. MR 2318315, DOI 10.1007/s00220-007-0189-3
- Matthias Christandl, Brent Doran, Stavros Kousidis, and Michael Walter, Eigenvalue distributions of reduced density matrices, Comm. Math. Phys. 332 (2014), no. 1, 1–52. MR 3253698, DOI 10.1007/s00220-014-2144-4
- Benoît Collins, Jonathan Novak, and Piotr Śniady, Semiclassical asymptotics of $\textrm {GL}_N(\Bbb C)$ tensor products and quantum random matrices, Selecta Math. (N.S.) 24 (2018), no. 3, 2571–2623. MR 3816511, DOI 10.1007/s00029-017-0387-6
- R. Coquereaux, Multiplicities, pictographs, and volumes, Supersymmetries and Quantum Symmetries – SQS’19, A. Alikhanyan National Laboratory and Bogoliubov Laboratory of Theoretical Physics, Yerevan, 2019, arXiv:2003.00358.
- Robert Coquereaux, Colin McSwiggen, and Jean-Bernard Zuber, On Horn’s problem and its volume function, Comm. Math. Phys. 376 (2020), no. 3, 2409–2439. MR 4104554, DOI 10.1007/s00220-019-03646-7
- Robert Coquereaux, Colin McSwiggen, and Jean-Bernard Zuber, Revisiting Horn’s problem, J. Stat. Mech. Theory Exp. 9 (2019), 094018, 22. MR 4021509, DOI 10.1088/1742-5468/ab3bc2
- Robert Coquereaux and Jean-Bernard Zuber, From orbital measures to Littlewood-Richardson coefficients and hive polytopes, Ann. Inst. Henri Poincaré D 5 (2018), no. 3, 339–386. MR 3835549, DOI 10.4171/AIHPD/57
- Robert Coquereaux and Jean-Bernard Zuber, The Horn problem for real symmetric and quaternionic self-dual matrices, SIGMA Symmetry Integrability Geom. Methods Appl. 15 (2019), Paper No. 029, 34. MR 3939342, DOI 10.3842/SIGMA.2019.029
- Robert Coquereaux and Jean-Bernard Zuber, On Schur problem and Kostka numbers, Integrability, quantization, and geometry II. Quantum theories and algebraic geometry, Proc. Sympos. Pure Math., vol. 103, Amer. Math. Soc., Providence, RI, [2021] ©2021, pp. 111–135. MR 4285696, DOI 10.1090/pspum/103.2/01855
- Cesar Cuenca, Universal behavior of the corners of orbital beta processes, Int. Math. Res. Not. IMRN 19 (2021), 14761–14813. MR 4324728, DOI 10.1093/imrn/rnz226
- Wolfgang Dahmen and Charles A. Micchelli, On the local linear independence of translates of a box spline, Studia Math. 82 (1985), no. 3, 243–263. MR 825481, DOI 10.4064/sm-82-3-243-263
- Wolfgang Dahmen and Charles A. Micchelli, On the solution of certain systems of partial difference equations and linear dependence of translates of box splines, Trans. Amer. Math. Soc. 292 (1985), no. 1, 305–320. MR 805964, DOI 10.1090/S0002-9947-1985-0805964-6
- C. De Concini, C. Procesi, and M. Vergne, Box splines and the equivariant index theorem, J. Inst. Math. Jussieu 12 (2013), no. 3, 503–544. MR 3062869, DOI 10.1017/S1474748012000734
- Michel Duflo and Michèle Vergne, Kirillov’s formula and Guillemin-Sternberg conjecture, C. R. Math. Acad. Sci. Paris 349 (2011), no. 23-24, 1213–1217 (English, with English and French summaries). MR 2861987, DOI 10.1016/j.crma.2011.11.009
- J. J. Duistermaat and G. J. Heckman, On the variation in the cohomology of the symplectic form of the reduced phase space, Invent. Math. 69 (1982), no. 2, 259–268. MR 674406, DOI 10.1007/BF01399506
- P. Etingof and E. Rains, Mittag–Leffler type sums associated with root systems, arXiv:1811.05293, 2018.
- Peter J. Forrester and Jiyuan Zhang, Corank-1 projections and the randomised Horn problem, Tunis. J. Math. 3 (2021), no. 1, 55–73. MR 4103766, DOI 10.2140/tunis.2021.3.55
- Victor Guillemin, Moment maps and combinatorial invariants of Hamiltonian $T^n$-spaces, Progress in Mathematics, vol. 122, Birkhäuser Boston, Inc., Boston, MA, 1994. MR 1301331, DOI 10.1007/978-1-4612-0269-1
- V. Guillemin and S. Sternberg, Geometric quantization and multiplicities of group representations, Invent. Math. 67 (1982), no. 3, 515–538. MR 664118, DOI 10.1007/BF01398934
- Brian C. Hall, Lie groups, Lie algebras, and representations, Graduate Texts in Mathematics, vol. 222, Springer-Verlag, New York, 2003. An elementary introduction. MR 1997306, DOI 10.1007/978-0-387-21554-9
- Harish-Chandra, Differential operators on a semisimple Lie algebra, Amer. J. Math. 79 (1957), 87–120. MR 84104, DOI 10.2307/2372387
- G. J. Heckman, Projections of orbits and asymptotic behavior of multiplicities for compact connected Lie groups, Invent. Math. 67 (1982), no. 2, 333–356. MR 665160, DOI 10.1007/BF01393821
- Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics, vol. 34, American Mathematical Society, Providence, RI, 2001. Corrected reprint of the 1978 original. MR 1834454, DOI 10.1090/gsm/034
- R. L. Hudson and G. R. Moody, Locally normal symmetric states and an analogue of de Finetti’s theorem, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 33 (1975/76), no. 4, 343–351. MR 397421, DOI 10.1007/BF00534784
- C. Itzykson and J. B. Zuber, The planar approximation. II, J. Math. Phys. 21 (1980), no. 3, 411–421. MR 562985, DOI 10.1063/1.524438
- Mario Kieburg and Jiyuan Zhang, Derivative principles for invariant ensembles, Adv. Math. 413 (2023), Paper No. 108833, 52. MR 4526494, DOI 10.1016/j.aim.2022.108833
- A. A. Kirillov, Lectures on the orbit method, Graduate Studies in Mathematics, vol. 64, American Mathematical Society, Providence, RI, 2004. MR 2069175, DOI 10.1090/gsm/064
- Frances Kirwan, Convexity properties of the moment mapping. III, Invent. Math. 77 (1984), no. 3, 547–552. MR 759257, DOI 10.1007/BF01388838
- A. Knutson, Schubert calculus and quantum information, Workshop on Quantum Marginals and Density Matrices, Fields Institute, Toronto, 2009, http://pi.math.cornell.edu/~allenk/qclectures.pdf.
- A. Klyachko, Quantum marginal problem and representations of the symmetric group, arXiv:quant-ph/0409113, 2004.
- Robert König and Renato Renner, A de Finetti representation for finite symmetric quantum states, J. Math. Phys. 46 (2005), no. 12, 122108, 23. MR 2194019, DOI 10.1063/1.2146188
- Jonathan Leake and Nisheeth K. Vishnoi, On the computability of continuous maximum entropy distributions with applications, STOC ’20—Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, ACM, New York, [2020] ©2020, pp. 930–943. MR 4141811, DOI 10.1145/3357713.3384302
- Seth Lloyd and Heinz Pagels, Complexity as thermodynamic depth, Ann. Physics 188 (1988), no. 1, 186–213. MR 974640, DOI 10.1016/0003-4916(88)90094-2
- S. Matsumoto and C. McSwiggen, Moments of random quantum marginals via Weingarten calculus, arXiv:2210.11349, 2022. Int. Math. Res. Not. IMRN, to appear.
- Colin McSwiggen, The Harish-Chandra integral: an introduction with examples, Enseign. Math. 67 (2021), no. 3-4, 229–299. MR 4344782, DOI 10.4171/lem/1017
- Colin McSwiggen, Box splines, tensor product multiplicities and the volume function, Algebr. Comb. 4 (2021), no. 3, 435–464. MR 4275822, DOI 10.5802/alco.164
- Hariharan Narayanan, On the complexity of computing Kostka numbers and Littlewood-Richardson coefficients, J. Algebraic Combin. 24 (2006), no. 3, 347–354. MR 2260022, DOI 10.1007/s10801-006-0008-5
- J. Novak, On the complex asymptotics of the HCIZ and BGW integrals, arXiv:2006.04304
- J. Novak, Topological expansion of oscillatory BGW and HCIZ integrals at strong coupling, arXiv:2203.10746.
- Paul-Émile Paradan and Michèle Vergne, Equivariant index of twisted Dirac operators and semi-classical limits, Lie groups, geometry, and representation theory, Progr. Math., vol. 326, Birkhäuser/Springer, Cham, 2018, pp. 419–458. MR 3890217, DOI 10.1007/978-3-030-02191-7_{1}5
- Hartmut Prautzsch and Wolfgang Boehm, Box splines, Handbook of computer aided geometric design, North-Holland, Amsterdam, 2002, pp. 255–282. MR 1928543, DOI 10.1016/B978-044451104-1/50011-3
- Mary Beth Ruskai, $N$-representability problem: Conditions on geminals, Phys. Rev. (2) 183 (1969), 129–141. MR 251990, DOI 10.1103/PhysRev.183.129
- C. Schilling, The quantum marginal problem, Mathematical results in quantum mechanics, World Sci. Publ., Hackensack, NJ, 2015, pp. 165–176. MR 3381146
- Hans-Jürgen Sommers and Karol Życzkowski, Statistical properties of random density matrices, J. Phys. A 37 (2004), no. 35, 8457–8466. MR 2091254, DOI 10.1088/0305-4470/37/35/004
- Hans-Jürgen Sommers and Karol Życzkowski, Bures volume of the set of mixed quantum states, J. Phys. A 36 (2003), no. 39, 10083–10100. MR 2024514, DOI 10.1088/0305-4470/36/39/308
- Erling Størmer, Symmetric states of infinite tensor products of $C^{\ast }$-algebras, J. Functional Analysis 3 (1969), 48–68. MR 241992, DOI 10.1016/0022-1236(69)90050-0
- T. Tyc and J. Vlach, Quantum marginal problems, Eur. Phys. J. D. 69 (2015).
- Jiyuan Zhang, Mario Kieburg, and Peter J. Forrester, Harmonic analysis for rank-1 randomised Horn problems, Lett. Math. Phys. 111 (2021), no. 4, Paper No. 98, 27. MR 4287244, DOI 10.1007/s11005-021-01429-7
- Jean-Bernard Zuber, Horn’s problem and Harish-Chandra’s integrals. Probability density functions, Ann. Inst. Henri Poincaré D 5 (2018), no. 3, 309–338. MR 3835548, DOI 10.4171/AIHPD/56
- Jean-Bernard Zuber, On the minor problem and branching coefficients, Ann. Inst. Henri Poincaré D 9 (2022), no. 2, 349–366. MR 4450017, DOI 10.4171/aihpd/120
- J.-B. Zuber, Personal communication, 2021.
- Karol Życzkowski and Hans-Jürgen Sommers, Induced measures in the space of mixed quantum states, J. Phys. A 34 (2001), no. 35, 7111–7125. Quantum information and computation. MR 1863143, DOI 10.1088/0305-4470/34/35/335
Bibliographic Information
- Benoît Collins
- Affiliation: Department of Mathematics, Kyoto University, Japan
- MR Author ID: 710054
- ORCID: 0000-0001-7061-6861
- Email: collins@math.kyoto-u.ac.jp
- Colin McSwiggen
- Affiliation: Courant Institute of Mathematical Sciences, New York University
- MR Author ID: 1177558
- Email: csm482@nyu.edu
- Received by editor(s): February 13, 2022
- Received by editor(s) in revised form: January 16, 2023
- Published electronically: May 23, 2023
- Additional Notes: The work of the first author was supported by JSPS KAKENHI 17K18734 and 17H04823, as well as by Japan–France Integrated Action Program (SAKURA), grant number JPJSBP120203202. The work of the second author was supported by the National Science Foundation under grant number DMS 2103170, and by JST CREST program JPMJCR18T6.
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 5601-5640
- MSC (2020): Primary 15B52, 81P45, 05E10
- DOI: https://doi.org/10.1090/tran/8931
- MathSciNet review: 4630755