$p$-group Galois covers of curves in characteristic $p$
HTML articles powered by AMS MathViewer
- by Jędrzej Garnek
- Trans. Amer. Math. Soc. 376 (2023), 5857-5897
- DOI: https://doi.org/10.1090/tran/8932
- Published electronically: May 17, 2023
- HTML | PDF | Request permission
Abstract:
We study cohomologies of a curve with an action of a finite $p$-group over a field of characteristic $p$. Assuming the existence of a certain “magical element” in the function field of the curve, we compute the equivariant structure of the module of holomorphic differentials and the de Rham cohomology, up to certain local terms. We show that a generic $p$-group cover has a “magical element”. As an application we compute the de Rham cohomology of a curve with an action of a finite cyclic group of prime order.References
- Theo Bühler, Exact categories, Expo. Math. 28 (2010), no. 1, 1–69. MR 2606234, DOI 10.1016/j.exmath.2009.04.004
- Frauke M. Bleher, Ted Chinburg, and Aristides Kontogeorgis, Galois structure of the holomorphic differentials of curves, J. Number Theory 216 (2020), 1–68. MR 4130074, DOI 10.1016/j.jnt.2020.04.015
- Jeremy Booher and Bryden Cais, $a$-numbers of curves in Artin-Schreier covers, Algebra Number Theory 14 (2020), no. 3, 587–641. MR 4113776, DOI 10.2140/ant.2020.14.587
- Niels Borne, Cohomology of $G$-sheaves in positive characteristic, Adv. Math. 201 (2006), no. 2, 454–515. MR 2211535, DOI 10.1016/j.aim.2005.03.002
- C. Chevalley, A. Weil, and E. Hecke, Über das verhalten der integrale 1. gattung bei automorphismen des funktionenkörpers, Abh. Math. Sem. Univ. Hamburg 10 (1934), no. 1, 358–361 (German). MR 3069638, DOI 10.1007/BF02940687
- Lindsay N. Childs and Morris Orzech, On modular group rings, normal bases, and fixed points, Amer. Math. Monthly 88 (1981), no. 2, 142–145. MR 606253, DOI 10.2307/2321137
- Ted Chinburg, Galois structure of de Rham cohomology of tame covers of schemes, Ann. of Math. (2) 139 (1994), no. 2, 443–490. MR 1274097, DOI 10.2307/2946586
- Ted Chinburg, Boas Erez, Georgios Pappas, and Martin J. Taylor, $\epsilon$-constants and the Galois structure of de Rham cohomology, Ann. of Math. (2) 146 (1997), no. 2, 411–473. MR 1477762, DOI 10.2307/2952466
- Neil Dummigan, The determinants of certain Mordell-Weil lattices, Amer. J. Math. 117 (1995), no. 6, 1409–1429. MR 1363073, DOI 10.2307/2375024
- Neil Dummigan, Complete $p$-descent for Jacobians of Hermitian curves, Compositio Math. 119 (1999), no. 2, 111–132. MR 1723124, DOI 10.1023/A:1001721808335
- David S. Dummit and Richard M. Foote, Abstract algebra, 3rd ed., John Wiley & Sons, Inc., Hoboken, NJ, 2004. MR 2286236
- Arsen Elkin and Rachel Pries, Ekedahl-Oort strata of hyperelliptic curves in characteristic 2, Algebra Number Theory 7 (2013), no. 3, 507–532. MR 3095219, DOI 10.2140/ant.2013.7.507
- G. Ellingsrud and K. Lønsted, An equivariant Lefschetz formula for finite reductive groups, Math. Ann. 251 (1980), no. 3, 253–261. MR 589254, DOI 10.1007/BF01428945
- Edward Formanek and David Sibley, The group determinant determines the group, Proc. Amer. Math. Soc. 112 (1991), no. 3, 649–656. MR 1062831, DOI 10.1090/S0002-9939-1991-1062831-1
- Jędrzej Garnek, Equivariant splitting of the Hodge–de Rham exact sequence, Math. Z. 300 (2022), no. 2, 1917–1938. MR 4363802, DOI 10.1007/s00209-021-02839-y
- Benedict H. Gross, Rigid local systems on $\Bbb G_m$ with finite monodromy, Adv. Math. 224 (2010), no. 6, 2531–2543. MR 2652215, DOI 10.1016/j.aim.2010.02.008
- Robert M. Guralnick, Roth’s theorems and decomposition of modules, Linear Algebra Appl. 39 (1981), 155–165. MR 625247, DOI 10.1016/0024-3795(81)90300-1
- Burkhard Haastert and Jens Carsten Jantzen, Filtrations of the discrete series of $\textrm {SL}_2(q)$ via crystalline cohomology, J. Algebra 132 (1990), no. 1, 77–103. MR 1060833, DOI 10.1016/0021-8693(90)90253-K
- Dirk Hachenberger and Dieter Jungnickel, Topics in Galois fields, Algorithms and Computation in Mathematics, vol. 29, Springer, Cham, [2020] ©2020. MR 4233161, DOI 10.1007/978-3-030-60806-4
- David Harbater, Moduli of $p$-covers of curves, Comm. Algebra 8 (1980), no. 12, 1095–1122. MR 579791, DOI 10.1080/00927878008822511
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 463157, DOI 10.1007/978-1-4757-3849-0
- Ruthi Hortsch, On the canonical representation of curves in positive characteristic, New York J. Math. 18 (2012), 911–924. MR 3007205
- Reinhold Hübl, Residual representation of algebraic-geometric codes, Univ. Iagel. Acta Math. 39 (2001), 25–48. Effective methods in algebraic and analytic geometry, 2000 (Kraków). MR 1886927
- Duc Van Huynh, Artin-Schreier extensions and generalized associated orders, J. Number Theory 136 (2014), 28–45. MR 3145322, DOI 10.1016/j.jnt.2013.09.009
- Ernst Kani, The Galois-module structure of the space of holomorphic differentials of a curve, J. Reine Angew. Math. 367 (1986), 187–206. MR 839131, DOI 10.1515/crll.1986.367.187
- Bernhard Köck, Galois structure of Zariski cohomology for weakly ramified covers of curves, Amer. J. Math. 126 (2004), no. 5, 1085–1107. MR 2089083, DOI 10.1353/ajm.2004.0037
- Bernhard Köck and Joseph Tait, On the de-Rham cohomology of hyperelliptic curves, Res. Number Theory 4 (2018), no. 2, Paper No. 19, 17. MR 3782449, DOI 10.1007/s40993-018-0111-4
- Li-Qian Liu, The decomposition numbers of $\textrm {Suz}(q)$, J. Algebra 172 (1995), no. 1, 1–31. MR 1320616, DOI 10.1006/jabr.1995.1045
- G. Lusztig, Coxeter orbits and eigenspaces of Frobenius, Invent. Math. 38 (1976/77), no. 2, 101–159. MR 453885, DOI 10.1007/BF01408569
- Saunders Mac Lane, Categories for the working mathematician, 2nd ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998. MR 1712872
- Daniel J. Madden, Arithmetic in generalized Artin-Schreier extensions of $k(x)$, J. Number Theory 10 (1978), no. 3, 303–323. MR 506641, DOI 10.1016/0022-314X(78)90027-6
- Beth Malmskog, Rachel Pries, and Colin Weir, The de Rham cohomology of the Suzuki curves, Arithmetic geometry: computation and applications, Contemp. Math., vol. 722, Amer. Math. Soc., [Providence], RI, [2019] ©2019, pp. 105–119. MR 3896851, DOI 10.1090/conm/722/14537
- Sophie Marques and Kenneth Ward, Holomorphic differentials of certain solvable covers of the projective line over a perfect field, Math. Nachr. 291 (2018), no. 13, 2057–2083. MR 3858677, DOI 10.1002/mana.201500347
- Sh\B{o}ichi Nakajima, Galois module structure of cohomology groups for tamely ramified coverings of algebraic varieties, J. Number Theory 22 (1986), no. 1, 115–123. MR 821138, DOI 10.1016/0022-314X(86)90032-6
- Bjorn Poonen, Gonality of modular curves in characteristic $p$, Math. Res. Lett. 14 (2007), no. 4, 691–701. MR 2335995, DOI 10.4310/MRL.2007.v14.n4.a14
- Rachel Pries and Hui June Zhu, The $p$-rank stratification of Artin-Schreier curves, Ann. Inst. Fourier (Grenoble) 62 (2012), no. 2, 707–726 (English, with English and French summaries). MR 2985514, DOI 10.5802/aif.2692
- David J. Saltman, Noncrossed product $p$-algebras and Galois $p$-extensions, J. Algebra 52 (1978), no. 2, 302–314. MR 480640, DOI 10.1016/0021-8693(78)90240-5
- Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg. MR 554237, DOI 10.1007/978-1-4757-5673-9
- The Stacks Project Authors, Stacks Project, 2022, http://stacks.math.columbia.edu.
- John Tate, Residues of differentials on curves, Ann. Sci. École Norm. Sup. (4) 1 (1968), 149–159. MR 227171, DOI 10.24033/asens.1162
- Robert C. Valentini and Manohar L. Madan, Automorphisms and holomorphic differentials in characteristic $p$, J. Number Theory 13 (1981), no. 1, 106–115. MR 602451, DOI 10.1016/0022-314X(81)90032-9
- Lawrence C. Washington, Introduction to cyclotomic fields, 2nd ed., Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1997. MR 1421575, DOI 10.1007/978-1-4612-1934-7
- Peter Webb, A course in finite group representation theory, Cambridge Studies in Advanced Mathematics, vol. 161, Cambridge University Press, Cambridge, 2016. MR 3617363, DOI 10.1017/CBO9781316677216
- Umberto Zannier, A note on traces of differential forms, J. Pure Appl. Algebra 142 (1999), no. 1, 91–97. MR 1716049, DOI 10.1016/S0022-4049(98)00045-0
Bibliographic Information
- Jędrzej Garnek
- Affiliation: Faculty of Mathematics and Computer Science, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 4, 61-614 Poznan, Poland
- ORCID: 0000-0002-7549-993X
- Email: jgarnek@amu.edu.pl
- Received by editor(s): February 28, 2022
- Received by editor(s) in revised form: August 26, 2022, December 14, 2022, and February 17, 2023
- Published electronically: May 17, 2023
- Additional Notes: The author was supported by the grant 038/04/NŚ/0011, which is a part of the project “Initiative of Excellence – Research University” on Adam Mickiewicz University, Poznan.
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 5857-5897
- MSC (2020): Primary 14F40; Secondary 14G17, 14H30
- DOI: https://doi.org/10.1090/tran/8932
- MathSciNet review: 4630761