Tropical curves in abelian surfaces II: Enumeration of curves in linear systems
HTML articles powered by AMS MathViewer
- by Thomas Blomme
- Trans. Amer. Math. Soc. 376 (2023), 5641-5691
- DOI: https://doi.org/10.1090/tran/8941
- Published electronically: May 31, 2023
- HTML | PDF | Request permission
Abstract:
In this paper, second installment in a series of three, we give a correspondence theorem to relate the count of genus $g$ curves in a fixed linear system of an abelian surface passing through $g-2$ points to a tropical count. To do this, we relate the linear system defined by a complex curve to certain integrals of $1$-forms over cycles on the curve. We then give an expression for the tropical multiplicity provided by the correspondence theorem, and prove the invariance for the associated refined multiplicity, thus introducing refined invariants of Block-Göttsche type in abelian surfaces.References
- Dan Abramovich, Qile Chen, Mark Gross, and Bernd Siebert, Decomposition of degenerate Gromov-Witten invariants, Compos. Math. 156 (2020), no. 10, 2020–2075. MR 4177284, DOI 10.1112/s0010437x20007393
- Lev Blechman and Eugenii Shustin, Refined descendant invariants of toric surfaces, Discrete Comput. Geom. 62 (2019), no. 1, 180–208. MR 3959926, DOI 10.1007/s00454-019-00093-y
- Florian Block and Lothar Göttsche, Refined curve counting with tropical geometry, Compos. Math. 152 (2016), no. 1, 115–151. MR 3453390, DOI 10.1112/S0010437X1500754X
- Thomas Blomme, Floor diagrams and enumerative invariants of line bundles over an elliptic curve, Preprint, arXiv:2112.05439, 2021.
- Thomas Blomme, Refined count for rational tropical curves in arbitrary dimension, Math. Ann. 382 (2022), no. 3-4, 1199–1244. MR 4403222, DOI 10.1007/s00208-021-02287-3
- Thomas Blomme, Refined count of real oriented rational curves, Preprint, arXiv:2107.07286, 2021.
- Thomas Blomme, Tropical curves in abelian surfaces I: enumeration of curves passing through points, Preprint, arXiv:2202.07250, 2022.
- Thomas Blomme, Tropical curves in abelian surfaces III: pearl diagrams and multiple cover formulas, Preprint, arXiv:2205.07684, 2022.
- Pierrick Bousseau, Tropical refined curve counting from higher genera and lambda classes, Invent. Math. 215 (2019), no. 1, 1–79. MR 3904449, DOI 10.1007/s00222-018-0823-z
- Erwan Brugallé and Kristin Shaw, A bit of tropical geometry, Amer. Math. Monthly 121 (2014), no. 7, 563–589. MR 3229103, DOI 10.4169/amer.math.monthly.121.07.563
- Jim Bryan and Naichung Conan Leung, Generating functions for the number of curves on abelian surfaces, Duke Math. J. 99 (1999), no. 2, 311–328. MR 1708022, DOI 10.1215/S0012-7094-99-09911-8
- Jim Bryan, Georg Oberdieck, Rahul Pandharipande, and Qizheng Yin, Curve counting on abelian surfaces and threefolds, Algebr. Geom. 5 (2018), no. 4, 398–463. MR 3813750, DOI 10.14231/ag-2018-012
- Manfred Einsiedler, Mikhail Kapranov, and Douglas Lind, Non-Archimedean amoebas and tropical varieties, J. Reine Angew. Math. 601 (2006), 139–157. MR 2289207, DOI 10.1515/CRELLE.2006.097
- Lothar Göttsche and Franziska Schroeter, Refined broccoli invariants, J. Algebraic Geom. 28 (2019), no. 1, 1–41. MR 3875360, DOI 10.1090/jag/705
- Lothar Göttsche and Vivek Shende, Refined curve counting on complex surfaces, Geom. Topol. 18 (2014), no. 4, 2245–2307. MR 3268777, DOI 10.2140/gt.2014.18.2245
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978. MR 507725
- Mark Gross and Bernd Siebert, Mirror symmetry via logarithmic degeneration data. I, J. Differential Geom. 72 (2006), no. 2, 169–338. MR 2213573
- Lars Halvard Halle and Simon C. F. Rose, Tropical count of curves on abelian varieties, Commun. Number Theory Phys. 11 (2017), no. 1, 219–248. MR 3668972, DOI 10.4310/CNTP.2017.v11.n1.a5
- Ilia Itenberg and Grigory Mikhalkin, On Block-Göttsche multiplicities for planar tropical curves, Int. Math. Res. Not. IMRN 23 (2013), 5289–5320. MR 3142257, DOI 10.1093/imrn/rns207
- Mikhail M. Kapranov, Amoebas over non-Archimedean fields, Preprint, 2000.
- Cheuk Yu Mak and Helge Ruddat, Tropically constructed Lagrangians in mirror quintic threefolds, Forum Math. Sigma 8 (2020), Paper No. e58, 55. MR 4179650, DOI 10.1017/fms.2020.54
- Travis Mandel and Helge Ruddat, Descendant log Gromov-Witten invariants for toric varieties and tropical curves, Trans. Amer. Math. Soc. 373 (2020), no. 2, 1109–1152. MR 4068259, DOI 10.1090/tran/7936
- Grigory Mikhalkin, Enumerative tropical algebraic geometry in $\Bbb R^2$, J. Amer. Math. Soc. 18 (2005), no. 2, 313–377. MR 2137980, DOI 10.1090/S0894-0347-05-00477-7
- Grigory Mikhalkin, Quantum indices and refined enumeration of real plane curves, Acta Math. 219 (2017), no. 1, 135–180. MR 3765660, DOI 10.4310/ACTA.2017.v219.n1.a5
- Grigory Mikhalkin and Ilia Zharkov, Tropical curves, their Jacobians and theta functions, Curves and abelian varieties, Contemp. Math., vol. 465, Amer. Math. Soc., Providence, RI, 2008, pp. 203–230. MR 2457739, DOI 10.1090/conm/465/09104
- Takeo Nishinou, Realization of tropical curves in abelian surfaces, Preprint, arXiv:2007.16148, 2020.
- Takeo Nishinou and Bernd Siebert, Toric degenerations of toric varieties and tropical curves, Duke Math. J. 135 (2006), no. 1, 1–51. MR 2259922, DOI 10.1215/S0012-7094-06-13511-1
- Mikael Passare and Hans Rullgård, Amoebas, Monge-Ampère measures, and triangulations of the Newton polytope, Duke Math. J. 121 (2004), no. 3, 481–507. MR 2040284, DOI 10.1215/S0012-7094-04-12134-7
- Helge Ruddat and Bernd Siebert, Period integrals from wall structures via tropical cycles, canonical coordinates in mirror symmetry and analyticity of toric degenerations, Publ. Math. Inst. Hautes Études Sci. 132 (2020), 1–82. MR 4179831, DOI 10.1007/s10240-020-00116-y
- Franziska Schroeter and Eugenii Shustin, Refined elliptic tropical enumerative invariants, Israel J. Math. 225 (2018), no. 2, 817–869. MR 3805667, DOI 10.1007/s11856-018-1680-6
- E. Shustin, A tropical approach to enumerative geometry, Algebra i Analiz 17 (2005), no. 2, 170–214; English transl., St. Petersburg Math. J. 17 (2006), no. 2, 343–375. MR 2159589, DOI 10.1090/S1061-0022-06-00908-3
- Eugenii Shustin, A tropical calculation of the Welschinger invariants of real toric del Pezzo surfaces, J. Algebraic Geom. 15 (2006), no. 2, 285–322. MR 2199066, DOI 10.1090/S1056-3911-06-00434-6
- Ilya Tyomkin, Enumeration of rational curves with cross-ratio constraints, Adv. Math. 305 (2017), 1356–1383. MR 3570161, DOI 10.1016/j.aim.2016.10.010
Bibliographic Information
- Thomas Blomme
- Affiliation: Université de Genève, Rue du Conseil Général 5-7, 1205 Genève, Suisse
- MR Author ID: 1497057
- ORCID: 0000-0001-5881-4750
- Email: thomas.blomme@unige.ch
- Received by editor(s): March 24, 2022
- Received by editor(s) in revised form: November 13, 2022, January 16, 2023, and January 16, 2023
- Published electronically: May 31, 2023
- Additional Notes: This research was supported in part by the SNSF grant 204125.
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 5641-5691
- MSC (2020): Primary 14N10, 14T90, 11G10, 14K05, 14H99
- DOI: https://doi.org/10.1090/tran/8941
- MathSciNet review: 4630756