The $\omega$-Vaught’s conjecture
HTML articles powered by AMS MathViewer
- by David Gonzalez and Antonio Montalbán;
- Trans. Amer. Math. Soc. 376 (2023), 5989-6008
- DOI: https://doi.org/10.1090/tran/8950
- Published electronically: May 31, 2023
- HTML | PDF | Request permission
Abstract:
We introduce the $\omega$-Vaught’s conjecture, a strengthening of the infinitary Vaught’s conjecture. We believe that if one were to prove the infinitary Vaught’s conjecture in a structural way without using techniques from higher recursion theory, then the proof would probably be a proof of the $\omega$-Vaught’s conjecture. We show the existence of an equivalent condition to the $\omega$-Vaught’s conjecture and use this tool to show that all infinitary sentences whose models are linear orders satisfy the $\omega$-Vaught’s conjecture.References
- Su Gao, A remark on Martin’s conjecture, J. Symbolic Logic 66 (2001), no. 1, 401–406. MR 1825192, DOI 10.2307/2694929
- Su Gao, Some dichotomy theorems for isomorphism relations of countable models, J. Symbolic Logic 66 (2001), no. 2, 902–922. MR 1833486, DOI 10.2307/2695052
- Su Gao, Invariant descriptive set theory, Pure and Applied Mathematics (Boca Raton), vol. 293, CRC Press, Boca Raton, FL, 2009. MR 2455198
- Antonio Montalbán, A computability theoretic equivalent to Vaught’s conjecture, Adv. Math. 235 (2013), 56–73. MR 3010050, DOI 10.1016/j.aim.2012.11.012
- Antonio Montalbán, A robuster Scott rank, Proc. Amer. Math. Soc. 143 (2015), no. 12, 5427–5436. MR 3411157, DOI 10.1090/proc/12669
- Antonio Montalbán, Classes of structures with no intermediate isomorphism problems, J. Symb. Log. 81 (2016), no. 1, 127–150. MR 3471132, DOI 10.1017/jsl.2014.55
- Antonio Montalbán, Computable structure theory—within the arithmetic, Perspectives in Logic, Cambridge University Press, Cambridge; Association for Symbolic Logic, Ithaca, NY, 2021. MR 4274028, DOI 10.1017/9781108525749
- Antonio Montalbán and Pierre Simon, Countable boolean algebras, Unpublished notes, 2017.
- Joseph G. Rosenstein, Linear orderings, Pure and Applied Mathematics, vol. 98, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1982. MR 662564
- Matatyahu Rubin, Theories of linear order, Israel J. Math. 17 (1974), 392–443. MR 349377, DOI 10.1007/BF02757141
- Gerald E. Sacks, Bounds on weak scattering, Notre Dame J. Formal Logic 48 (2007), no. 1, 5–31. MR 2289894, DOI 10.1305/ndjfl/1172787542
- John R. Steel, On Vaught’s conjecture, Cabal Seminar 76–77 (Proc. Caltech-UCLA Logic Sem., 1976–77) Lecture Notes in Math., vol. 689, Springer, Berlin, 1978, pp. 193–208. MR 526920
- R. L. Vaught, Denumerable models of complete theories, Infinitistic Methods (Proc. Sympos. Foundations of Math., Warsaw, 1959) Pergamon, Oxford-London-New York-Paris, 1961, pp. 303–321. MR 186552
- C. M. Wagner, On Martin’s conjecture, Ann. Math. Logic 22 (1982), no. 1, 47–67. MR 661477, DOI 10.1016/0003-4843(82)90015-8
Bibliographic Information
- David Gonzalez
- Affiliation: University of California, Berkeley, 110 Sproul Hall #5800, Berkeley, California 94720-5800
- MR Author ID: 1326514
- Email: david_gonzalez@berkeley.edu
- Antonio Montalbán
- Affiliation: University of California, Berkeley, Berkeley, California 94720-5800
- ORCID: 0000-0002-5068-1444
- Email: antonio@math.berkeley.edu
- Received by editor(s): November 3, 2022
- Received by editor(s) in revised form: March 7, 2023
- Published electronically: May 31, 2023
- Additional Notes: The second author was partially supported by NSF grant DMS-1363310.
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 5989-6008
- MSC (2020): Primary 03D45, 03C75
- DOI: https://doi.org/10.1090/tran/8950
- MathSciNet review: 4630765