Local statistics for zeros of Artin-Schreier $L$-functions
HTML articles powered by AMS MathViewer
- by Alexei Entin and Noam Pirani;
- Trans. Amer. Math. Soc. 376 (2023), 6141-6175
- DOI: https://doi.org/10.1090/tran/8850
- Published electronically: June 29, 2023
- HTML | PDF | Request permission
Abstract:
We study the local statistics of zeros of $L$-functions attached to Artin-Scheier curves over finite fields. We consider three families of Artin-Schreier $L$-functions: the ordinary, polynomial (the $p$-rank 0 stratum) and odd-polynomial families. We compute the 1-level zero-density of the first and third families and the 2-level density of the second family for test functions with Fourier transform supported in a suitable interval. In each case we obtain agreement with a unitary or symplectic random matrix model.References
- Julio C. Andrade, Steven J. Miller, Kyle Pratt, and Minh-Tam Trinh, Zeros of Dirichlet $L$-functions over function fields, Commun. Number Theory Phys. 8 (2014), no. 3, 511–539. MR 3282994, DOI 10.4310/CNTP.2014.v8.n3.a3
- Alina Bucur, Edgar Costa, Chantal David, João Guerreiro, and David Lowry-Duda, Traces, high powers and one level density for families of curves over finite fields, Math. Proc. Cambridge Philos. Soc. 165 (2018), no. 2, 225–248. MR 3833999, DOI 10.1017/S030500411700041X
- Alina Bucur, Chantal David, Brooke Feigon, and Matilde Lalín, Statistics for ordinary Artin-Schreier covers and other $p$-rank strata, Trans. Amer. Math. Soc. 368 (2016), no. 4, 2371–2413. MR 3449243, DOI 10.1090/tran/6410
- Alina Bucur, Chantal David, Brooke Feigon, Matilde Lalín, and Kaneenika Sinha, Distribution of zeta zeroes of Artin-Schreier covers, Math. Res. Lett. 19 (2012), no. 6, 1329–1356. MR 3091611, DOI 10.4310/MRL.2012.v19.n6.a12
- H. M. Bui and Alexandra Florea, Zeros of quadratic Dirichlet $L$-functions in the hyperelliptic ensemble, Trans. Amer. Math. Soc. 370 (2018), no. 11, 8013–8045. MR 3852456, DOI 10.1090/tran/7317
- Sunghan Bae and Hwanyup Jung, Statistics for products of traces of high powers of the Frobenius class of hyperelliptic curves in even characteristic, Int. J. Number Theory 15 (2019), no. 7, 1519–1530. MR 3982825, DOI 10.1142/S1793042119500878
- Antoine Comeau-Lapointe, One-level density of the family of twists of an elliptic curve over function fields, J. Number Theory 241 (2022), 165–197. MR 4472438, DOI 10.1016/j.jnt.2022.03.005
- C. David and A. M. Güloğlu, One-level density and non-vanishing for cubic $L$-functions over the Eisenstein field, arXiv:2102.02469v1 [math.NT] (2021).
- Chantal David, Duc Khiem Huynh, and James Parks, One-level density of families of elliptic curves and the Ratios Conjecture, Res. Number Theory 1 (2015), Paper No. 6, 37. MR 3500990, DOI 10.1007/s40993-015-0005-7
- S. Drappeau, K. Pratt, and M. Radziwill, One-level density estimates for Dirichlet $L$-functions with extended support, arXiv:2002.11968v1 [math.NT] (2020).
- Persi Diaconis and Mehrdad Shahshahani, On the eigenvalues of random matrices, J. Appl. Probab. 31A (1994), 49–62. Studies in applied probability. MR 1274717, DOI 10.2307/3214948
- Alexei Entin, On the distribution of zeroes of Artin-Schreier L-functions, Geom. Funct. Anal. 22 (2012), no. 5, 1322–1360. MR 2989435, DOI 10.1007/s00039-012-0192-5
- Alexei Entin, Edva Roditty-Gershon, and Zeév Rudnick, Low-lying zeros of quadratic Dirichlet L-functions, hyper-elliptic curves and random matrix theory, Geom. Funct. Anal. 23 (2013), no. 4, 1230–1261. MR 3077912, DOI 10.1007/s00039-013-0241-8
- Nicholas M. Katz, Moments, monodromy, and perversity: a Diophantine perspective, Annals of Mathematics Studies, vol. 159, Princeton University Press, Princeton, NJ, 2005. MR 2183396
- Yonatan R. Katznelson, Integral matrices of fixed rank, Proc. Amer. Math. Soc. 120 (1994), no. 3, 667–675. MR 1169034, DOI 10.1090/S0002-9939-1994-1169034-3
- Nicholas M. Katz and Peter Sarnak, Random matrices, Frobenius eigenvalues, and monodromy, American Mathematical Society Colloquium Publications, vol. 45, American Mathematical Society, Providence, RI, 1999. MR 1659828, DOI 10.1090/coll/045
- Nicholas M. Katz and Peter Sarnak, Zeroes of zeta functions and symmetry, Bull. Amer. Math. Soc. (N.S.) 36 (1999), no. 1, 1–26. MR 1640151, DOI 10.1090/S0273-0979-99-00766-1
- A. K. Lenstra, Factoring multivariate polynomials over finite fields, J. Comput. System Sci. 30 (1985), no. 2, 235–248. MR 801825, DOI 10.1016/0022-0000(85)90016-9
- P. Meisner, Lower order terms for expected value of traces of Frobenius of a family of cyclic covers of $\mathbb P^1_{\mathbb F_q}$ and one-level densities, arXiv:2006.16886v1 [math.NT] (2020).
- Steven J. Miller, Investigations of zeros near the central point of elliptic curve $L$-functions, Experiment. Math. 15 (2006), no. 3, 257–279. With an appendix by Eduardo Dueñez. MR 2264466, DOI 10.1080/10586458.2006.10128967
- H. L. Montgomery, The pair correlation of zeros of the zeta function, Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972) Proc. Sympos. Pure Math., Vol. XXIV, Amer. Math. Soc., Providence, RI, 1973, pp. 181–193. MR 337821
- Hugh L. Montgomery and Robert C. Vaughan, Multiplicative number theory. I. Classical theory, Cambridge Studies in Advanced Mathematics, vol. 97, Cambridge University Press, Cambridge, 2007. MR 2378655
- A. M. Odlyzko, On the distribution of spacings between zeros of the zeta function, Math. Comp. 48 (1987), no. 177, 273–308. MR 866115, DOI 10.1090/S0025-5718-1987-0866115-0
- Rachel Pries and Hui June Zhu, The $p$-rank stratification of Artin-Schreier curves, Ann. Inst. Fourier (Grenoble) 62 (2012), no. 2, 707–726 (English, with English and French summaries). MR 2985514, DOI 10.5802/aif.2692
- Edva Roditty-Gershon, Statistics for products of traces of high powers of the Frobenius class of hyperelliptic curves, J. Number Theory 132 (2012), no. 3, 467–484. MR 2875350, DOI 10.1016/j.jnt.2011.09.008
- Michael Rosen, Number theory in function fields, Graduate Texts in Mathematics, vol. 210, Springer-Verlag, New York, 2002. MR 1876657, DOI 10.1007/978-1-4757-6046-0
- Zeév Rudnick, Traces of high powers of the Frobenius class in the hyperelliptic ensemble, Acta Arith. 143 (2010), no. 1, 81–99. MR 2640060, DOI 10.4064/aa143-1-5
- Wolfgang M. Schmidt, Asymptotic formulae for point lattices of bounded determinant and subspaces of bounded height, Duke Math. J. 35 (1968), 327–339. MR 224562
Bibliographic Information
- Alexei Entin
- MR Author ID: 1000427
- ORCID: 0000-0002-4169-7102
- Received by editor(s): February 20, 2022
- Received by editor(s) in revised form: October 18, 2022
- Published electronically: June 29, 2023
- Additional Notes: Both authors were partially supported by a grant of the Israel Science Foundation no. 2507/19.
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 6141-6175
- MSC (2020): Primary 11R59, 11M50, 11T55
- DOI: https://doi.org/10.1090/tran/8850
- MathSciNet review: 4630772