Decomposable Blaschke products of degree $2^n$
HTML articles powered by AMS MathViewer
- by Asuman Güven Aksoy, Francesca Arici, M. Eugenia Celorrio and Pamela Gorkin;
- Trans. Amer. Math. Soc. 376 (2023), 6341-6369
- DOI: https://doi.org/10.1090/tran/8937
- Published electronically: June 13, 2023
- HTML | PDF | Request permission
Abstract:
We study the decomposability of a finite Blaschke product $B$ of degree $2^n$ into $n$ degree-$2$ Blaschke products, examining the connections between Blaschke products, Poncelet’s theorem, and the monodromy group. We show that if the numerical range of the compression of the shift operator, $W(S_B)$, with $B$ a Blaschke product of degree $n$, is an ellipse, then $B$ can be written as a composition of lower-degree Blaschke products that correspond to a factorization of the integer $n$. We also show that a Blaschke product of degree $2^n$ with an elliptical Blaschke curve has at most $n$ distinct critical values, and we use this to examine the monodromy group associated with a regularized Blaschke product $B$. We prove that if $B$ can be decomposed into $n$ degree-$2$ Blaschke products, then the monodromy group associated with $B$ is the wreath product of $n$ cyclic groups of order $2$. Lastly, we study the group of invariants of a Blaschke product $B$ of order $2^n$ when $B$ is a composition of $n$ Blaschke products of order $2$.References
- Marcel Berger, Geometry. I, Universitext, Springer-Verlag, Berlin, 1987. Translated from the French by M. Cole and S. Levy. MR 882541, DOI 10.1007/978-3-540-93815-6
- G. Cassier and I. Chalendar, The group of the invariants of a finite Blaschke product, Complex Variables Theory Appl. 42 (2000), no. 3, 193–206. MR 1788126, DOI 10.1080/17476930008815283
- Tullio Ceccherini-Silberstein, Fabio Scarabotti, and Filippo Tolli, Representation theory and harmonic analysis of wreath products of finite groups, London Mathematical Society Lecture Note Series, vol. 410, Cambridge University Press, Cambridge, 2014. MR 3202374, DOI 10.1017/CBO9781107279087
- Isabelle Chalendar, Pamela Gorkin, and Jonathan R. Partington, The group of invariants of an inner function with finite spectrum, J. Math. Anal. Appl. 389 (2012), no. 2, 1259–1267. MR 2879294, DOI 10.1016/j.jmaa.2012.01.005
- C. Cowen, Finite Blaschke products as compositions of other finite Blaschke products, arXiv:1207:4010.
- G. Darboux, Principes de géométrie analytique, Gauthier-Villars, Paris, 1917, 519.
- Ulrich Daepp, Pamela Gorkin, Andrew Shaffer, and Karl Voss, Finding ellipses, Carus Mathematical Monographs, vol. 34, MAA Press, Providence, RI, 2018. What Blaschke products, Poncelet’s theorem, and the numerical range know about each other. MR 3932079, DOI 10.1090/car/034
- Ulrich Daepp, Pamela Gorkin, Andrew Shaffer, and Karl Voss, Möbius transformations and Blaschke products: the geometric connection, Linear Algebra Appl. 516 (2017), 186–211. MR 3589712, DOI 10.1016/j.laa.2016.11.032
- Ulrich Daepp, Pamela Gorkin, Andrew Shaffer, Benjamin Sokolowsky, and Karl Voss, Decomposing finite Blaschke products, J. Math. Anal. Appl. 426 (2015), no. 2, 1201–1216. MR 3314888, DOI 10.1016/j.jmaa.2015.01.039
- Ulrich Daepp, Pamela Gorkin, and Raymond Mortini, Ellipses and finite Blaschke products, Amer. Math. Monthly 109 (2002), no. 9, 785–795. MR 1933701, DOI 10.2307/3072367
- Ulrich Daepp, Pamela Gorkin, and Karl Voss, Poncelet’s theorem, Sendov’s conjecture, and Blaschke products, J. Math. Anal. Appl. 365 (2010), no. 1, 93–102. MR 2585079, DOI 10.1016/j.jmaa.2009.09.058
- Ulrich Daepp, Pamela Gorkin, Gunter Semmler, and Elias Wegert, The beauty of Blaschke products, Handbook of the mathematics of the arts and sciences, Springer, Cham, [2021] ©2021, pp. 45–78. MR 4432771, DOI 10.1007/978-3-319-57072-3_{8}8
- Andrea Del Centina, Poncelet’s porism: a long story of renewed discoveries, I, Arch. Hist. Exact Sci. 70 (2016), no. 1, 1–122. MR 3437893, DOI 10.1007/s00407-015-0163-y
- John D. Dixon and Brian Mortimer, Permutation groups, Graduate Texts in Mathematics, vol. 163, Springer-Verlag, New York, 1996. MR 1409812, DOI 10.1007/978-1-4612-0731-3
- Vladimir Dragović, Poncelet-Darboux curves, their complete decomposition and Marden theorem, Int. Math. Res. Not. IMRN 15 (2011), 3502–3523. MR 2822180, DOI 10.1093/imrn/rnq229
- Vladimir Dragović and Milena Radnović, Poncelet porisms and beyond, Frontiers in Mathematics, Birkhäuser/Springer Basel AG, Basel, 2011. Integrable billiards, hyperelliptic Jacobians and pencils of quadrics. MR 2798784, DOI 10.1007/978-3-0348-0015-0
- Gerd Fischer, Plane algebraic curves, Student Mathematical Library, vol. 15, American Mathematical Society, Providence, RI, 2001. Translated from the 1994 German original by Leslie Kay. MR 1836037, DOI 10.1090/stml/015
- Leopold Flatto, Poncelet’s theorem, American Mathematical Society, Providence, RI, 2009. Chapter 15 by S. Tabachnikov. MR 2465164, DOI 10.1090/mbk/056
- Alastair Fletcher, Unicritical Blaschke products and domains of ellipticity, Qual. Theory Dyn. Syst. 14 (2015), no. 1, 25–38. MR 3326210, DOI 10.1007/s12346-015-0133-4
- Marc Frantz, How conics govern Möbius transformations, Amer. Math. Monthly 111 (2004), no. 9, 779–790. MR 2104049, DOI 10.2307/4145189
- Masayo Fujimura, Inscribed ellipses and Blaschke products, Comput. Methods Funct. Theory 13 (2013), no. 4, 557–573. MR 3138353, DOI 10.1007/s40315-013-0037-8
- Masayo Fujimura, Interior and exterior curves of finite Blaschke products, J. Math. Anal. Appl. 467 (2018), no. 1, 711–722. MR 3834830, DOI 10.1016/j.jmaa.2018.07.031
- Stephan Ramon Garcia, Javad Mashreghi, and William T. Ross, Finite Blaschke products and their connections, Springer, Cham, 2018. MR 3793610, DOI 10.1007/978-3-319-78247-8
- Hwa-Long Gau and Pei Yuan Wu, Numerical range of $S(\phi )$, Linear and Multilinear Algebra 45 (1998), no. 1, 49–73. MR 1665615, DOI 10.1080/03081089808818577
- Hwa-Long Gau and Pei Yuan Wu, Lucas’ theorem refined, Linear and Multilinear Algebra 45 (1999), no. 4, 359–373. MR 1684719, DOI 10.1080/03081089908818600
- Hwa-Long Gau and Pei Yuan Wu, Numerical range circumscribed by two polygons, Linear Algebra Appl. 382 (2004), 155–170. MR 2050103, DOI 10.1016/j.laa.2003.12.003
- Hwa-Long Gau and Pei Yuan Wu, Condition for the numerical range to contain an elliptic disc, Linear Algebra Appl. 364 (2003), 213–222. MR 1971096, DOI 10.1016/S0024-3795(02)00548-7
- Pamela Gorkin and Robert C. Rhoades, Boundary interpolation by finite Blaschke products, Constr. Approx. 27 (2008), no. 1, 75–98. MR 2336418, DOI 10.1007/s00365-006-0646-3
- Pamela Gorkin and Nathan Wagner, Ellipses and compositions of finite Blaschke products, J. Math. Anal. Appl. 445 (2017), no. 2, 1354–1366. MR 3545246, DOI 10.1016/j.jmaa.2016.01.067
- Lorenz Halbeisen and Norbert Hungerbühler, A simple proof of Poncelet’s theorem (on the occasion of its bicentennial), Amer. Math. Monthly 122 (2015), no. 6, 537–551. MR 3361732, DOI 10.4169/amer.math.monthly.122.6.537
- Maurice Heins, On a class of conformal metrics, Nagoya Math. J. 21 (1962), 1–60. MR 143901, DOI 10.1017/S002776300002376X
- Markus Hunziker, Andrei Martínez-Finkelshtein, Taylor Poe, and Brian Simanek, Poncelet-Darboux, Kippenhahn, and Szegő: interactions between projective geometry, matrices and orthogonal polynomials, J. Math. Anal. Appl. 511 (2022), no. 1, Paper No. 126049, 35. MR 4379320, DOI 10.1016/j.jmaa.2022.126049
- Markus Hunziker, Andrei Martinez-Finkelshtein, Taylor Poe, and Brian Simanek, On Foci of ellipses inscribed in cyclic polygons, From operator theory to orthogonal polynomials, combinatorics, and number theory—a volume in honor of Lance Littlejohn’s 70th birthday, Oper. Theory Adv. Appl., vol. 285, Birkhäuser/Springer, Cham, [2021] ©2021, pp. 213–238. MR 4367469, DOI 10.1007/978-3-030-75425-9_{1}2
- S. M. Kerawala, Poncelet porism in two circles, Bull. Calcutta Math. Soc. 39 (1947), 85–105. MR 26339
- Rudolf Kippenhahn, On the numerical range of a matrix, Linear Multilinear Algebra 56 (2008), no. 1-2, 185–225. Translated from the German by Paul F. Zachlin and Michiel E. Hochstenbach [MR0059242]. MR 2378310, DOI 10.1080/03081080701553768
- Andrei Martínez-Finkelshtein, Brian Simanek, and Barry Simon, Poncelet’s theorem, paraorthogonal polynomials and the numerical range of compressed multiplication operators, Adv. Math. 349 (2019), 992–1035. MR 3945586, DOI 10.1016/j.aim.2019.04.027
- Boris Mirman, UB-matrices and conditions for Poncelet polygon to be closed, Linear Algebra Appl. 360 (2003), 123–150. MR 1948477, DOI 10.1016/S0024-3795(02)00447-0
- Boris Mirman, Sufficient conditions for Poncelet polygons not to close, Amer. Math. Monthly 112 (2005), no. 4, 351–356. MR 2125277, DOI 10.2307/30037471
- Boris Mirman, Numerical ranges and Poncelet curves, Linear Algebra Appl. 281 (1998), no. 1-3, 59–85. MR 1645335, DOI 10.1016/S0024-3795(98)10037-X
- Tuen Wai Ng and Ming-Xi Wang, Ritt’s theory on the unit disk, Forum Math. 25 (2013), no. 4, 821–851. MR 3089751, DOI 10.1515/form.2011.136
- Daniel Pecker, Poncelet’s theorem and billiard knots, Geom. Dedicata 161 (2012), 323–333. MR 2994045, DOI 10.1007/s10711-012-9708-2
- J. F. Ritt, Prime and composite polynomials, Trans. Amer. Math. Soc. 23 (1922), no. 1, 51–66. MR 1501189, DOI 10.1090/S0002-9947-1922-1501189-9
- Joseph J. Rotman, The theory of groups. An introduction, 2nd ed., Allyn and Bacon Series in Advanced Mathematics, Allyn and Bacon, Inc., Boston, MA, 1973. MR 442063
- Gunter Semmler and Elias Wegert, Finite Blaschke products with prescribed critical points, Stieltjes polynomials, and moment problems, Anal. Math. Phys. 9 (2019), no. 1, 221–249. MR 3933538, DOI 10.1007/s13324-017-0193-5
- Elias Wegert and Gunter Semmler, Phase plots of complex functions: a journey in illustration, Notices Amer. Math. Soc. 58 (2011), no. 6, 768–780. MR 2839922
- T. Sheil-Small, Complex polynomials, Cambridge Studies in Advanced Mathematics, vol. 75, Cambridge University Press, Cambridge, 2002. MR 1962935, DOI 10.1017/CBO9780511543074
- Barry Simon, CMV matrices: five years after, J. Comput. Appl. Math. 208 (2007), no. 1, 120–154. MR 2347741, DOI 10.1016/j.cam.2006.10.033
- Elias Wegert, Visual complex functions, Birkhäuser/Springer Basel AG, Basel, 2012. An introduction with phase portraits. MR 3024399, DOI 10.1007/978-3-0348-0180-5
- Elias Wegert, Seeing the monodromy group of a Blaschke product, Notices Amer. Math. Soc. 67 (2020), no. 7, 965–975. MR 4187107, DOI 10.1090/noti
- Elias Wegert, Erratum to “Seeing the monodromy group of a finite Blaschke Product”, Notices of the AMS
- Elias Wegert, Phase diagrams of meromorphic functions, Comput. Methods Funct. Theory 10 (2010), no. 2, 639–661. MR 2791328, DOI 10.1007/BF03321784
- Saeed Zakeri, On critical points of proper holomorphic maps on the unit disk, Bull. London Math. Soc. 30 (1998), no. 1, 62–66. MR 1479037, DOI 10.1112/S0024609397003706
Bibliographic Information
- Asuman Güven Aksoy
- Affiliation: Department of Mathematical Sciences, Claremont McKenna College, Claremont, California 91711
- MR Author ID: 24095
- ORCID: 0000-0003-2933-5114
- Email: asumanguvenaksoy@gmail.com
- Francesca Arici
- Affiliation: Mathematical Institute, Leiden University, P.O. Box 9512, 2300 RA Leiden, The Netherlands
- MR Author ID: 1145170
- ORCID: 0000-0001-8326-6135
- Email: f.arici@math.leidenuniv.nl
- M. Eugenia Celorrio
- Affiliation: Department of Mathematics and Statistics, Fylde College, Lancaster University, Lancaster, LA1 4YF, United Kingdom
- ORCID: 0000-0002-0725-4631
- Email: m.celorrioramirez@lancaster.ac.uk
- Pamela Gorkin
- Affiliation: Department of Mathematics, Bucknell University, 377 Olin Science Building, Lewisburg, Pennsylvania 17837
- MR Author ID: 75530
- ORCID: 0000-0003-0511-1415
- Email: pgorkin@bucknell.edu
- Received by editor(s): June 14, 2022
- Received by editor(s) in revised form: November 4, 2022, December 19, 2022, and January 25, 2023
- Published electronically: June 13, 2023
- Additional Notes: The second author was partially funded by the Netherlands Organisation of Scientific Research (NWO) under the VENI grant 016.192.237.
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 6341-6369
- MSC (2020): Primary 30J10; Secondary 30D05, 47A12, 20B05, 14N05
- DOI: https://doi.org/10.1090/tran/8937
- MathSciNet review: 4630778