On Hermitian manifolds whose Chern connection is Ambrose-Singer
HTML articles powered by AMS MathViewer
- by Lei Ni and Fangyang Zheng;
- Trans. Amer. Math. Soc. 376 (2023), 6681-6707
- DOI: https://doi.org/10.1090/tran/8956
- Published electronically: June 21, 2023
- HTML | PDF | Request permission
Abstract:
We consider the class of compact Hermitian manifolds whose Chern connection is Ambrose-Singer, namely, it has parallel torsion and curvature. We prove structure theorems for such manifolds.References
- D. V. Alekseevskiĭ and B. N. Kimel′fel′d, Structure of homogeneous Riemannian spaces with zero Ricci curvature, Funkcional. Anal. i Priložen. 9 (1975), no. 2, 5–11 (Russian). MR 402650
- W. Ambrose and I. M. Singer, On homogeneous Riemannian manifolds, Duke Math. J. 25 (1958), 647–669. MR 102842, DOI 10.1215/S0012-7094-58-02560-2
- Salomon Bochner and Deane Montgomery, Groups on analytic manifolds, Ann. of Math. (2) 48 (1947), 659–669. MR 22223, DOI 10.2307/1969133
- William M. Boothby, Hermitian manifolds with zero curvature, Michigan Math. J. 5 (1958), 229–233. MR 103990
- Armand Borel, Kählerian coset spaces of semisimple Lie groups, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 1147–1151. MR 77878, DOI 10.1073/pnas.40.12.1147
- Eugenio Calabi and Beno Eckmann, A class of compact, complex manifolds which are not algebraic, Ann. of Math. (2) 58 (1953), 494–500. MR 57539, DOI 10.2307/1969750
- Sergio Console and Lorenzo Nicolodi, Infinitesimal characterization of almost Hermitian homogeneous spaces, Comment. Math. Univ. Carolin. 40 (1999), no. 4, 713–721. MR 1756547
- Paul Gauduchon, La $1$-forme de torsion d’une variété hermitienne compacte, Math. Ann. 267 (1984), no. 4, 495–518 (French). MR 742896, DOI 10.1007/BF01455968
- H. Grauert and R. Remmert, Über kompakte homogene komplexe Mannigfaltigkeiten, Arch. Math. (Basel) 13 (1962), 498–507 (German). MR 145558, DOI 10.1007/BF01650099
- Jun-ichi Hano and Shoshichi Kobayashi, A fibering of a class of homogeneous complex manifolds, Trans. Amer. Math. Soc. 94 (1960), 233–243. MR 115188, DOI 10.1090/S0002-9947-1960-0115188-9
- V. F. Kiričenko, On homogeneous Riemannian spaces with an invariant structure tensor, Dokl. Akad. Nauk SSSR 252 (1980), no. 2, 291–293 (Russian). MR 571950
- Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol. I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1996. Reprint of the 1963 original; A Wiley-Interscience Publication. MR 1393940
- Bertram Kostant, Holonomy and the Lie algebra of infinitesimal motions of a Riemannian manifold, Trans. Amer. Math. Soc. 80 (1955), 528–542. MR 84825, DOI 10.1090/S0002-9947-1955-0084825-8
- Lei Ni, An alternate induction argument in Simons’ proof of holonomy theorem, Analysis and partial differential equations on manifolds, fractals and graphs, Adv. Anal. Geom., vol. 3, De Gruyter, Berlin, [2021] ©2021, pp. 443–458. MR 4320099, DOI 10.1515/9783110700763-016
- L. Nicolodi and F. Tricerri, On two theorems of I. M. Singer about homogeneous spaces, Ann. Global Anal. Geom. 8 (1990), no. 2, 193–209. MR 1088511, DOI 10.1007/BF00128003
- Lizhen Qin and Botong Wang, A family of compact complex and symplectic Calabi-Yau manifolds that are non-Kähler, Geom. Topol. 22 (2018), no. 4, 2115–2144. MR 3784517, DOI 10.2140/gt.2018.22.2115
- Kouei Sekigawa, Notes on homogeneous almost Hermitian manifolds, Hokkaido Math. J. 7 (1978), no. 2, 206–213. MR 509406, DOI 10.14492/hokmj/1381758447
- I. M. Singer, Infinitesimally homogeneous spaces, Comm. Pure Appl. Math. 13 (1960), 685–697. MR 131248, DOI 10.1002/cpa.3160130408
- J. Tits, Espaces homogènes complexes compacts, Comment. Math. Helv. 37 (1962/63), 111–120 (French). MR 154299, DOI 10.1007/BF02566965
- F. Tricerri, Locally homogeneous Riemannian manifolds, Rend. Sem. Mat. Univ. Politec. Torino 50 (1992), no. 4, 411–426 (1993). Differential geometry (Turin, 1992). MR 1261452
- F. Tricerri and L. Vanhecke, Homogeneous structures on Riemannian manifolds, London Mathematical Society Lecture Note Series, vol. 83, Cambridge University Press, Cambridge, 1983. MR 712664, DOI 10.1017/CBO9781107325531
- Li-Sheng Tseng and Shing-Tung Yau, Non-Kähler Calabi-Yau manifolds, String-Math 2011, Proc. Sympos. Pure Math., vol. 85, Amer. Math. Soc., Providence, RI, 2012, pp. 241–254. MR 2985333, DOI 10.1090/pspum/085/1381
- Yury Ustinovskiy, On the structure of Hermitian manifolds with semipositive Griffiths curvature, Trans. Amer. Math. Soc. 373 (2020), no. 8, 5333–5350. MR 4127878, DOI 10.1090/tran/8101
- Hsien-Chung Wang, Closed manifolds with homogeneous complex structure, Amer. J. Math. 76 (1954), 1–32. MR 66011, DOI 10.2307/2372397
- Hsien-Chung Wang, Complex parallisable manifolds, Proc. Amer. Math. Soc. 5 (1954), 771–776. MR 74064, DOI 10.1090/S0002-9939-1954-0074064-3
- Hsien-chung Wang, On invariant connections over a principal fibre bundle, Nagoya Math. J. 13 (1958), 1–19. MR 107276, DOI 10.1017/S0027763000023461
- Qingsong Wang, Bo Yang, and Fangyang Zheng, On Bismut flat manifolds, Trans. Amer. Math. Soc. 373 (2020), no. 8, 5747–5772. MR 4127891, DOI 10.1090/tran/8083
- Jörg Winkelmann, The classification of three-dimensional homogeneous complex manifolds, Lecture Notes in Mathematics, vol. 1602, Springer-Verlag, Berlin, 1995. MR 1439051, DOI 10.1007/BFb0095837
- Bo Yang and Fangyang Zheng, On curvature tensors of Hermitian manifolds, Comm. Anal. Geom. 26 (2018), no. 5, 1195–1222. MR 3900484, DOI 10.4310/CAG.2018.v26.n5.a7
Bibliographic Information
- Lei Ni
- Affiliation: Department of Mathematics, University of California, San Diego, La Jolla, California 92093
- MR Author ID: 640255
- Email: leni@ucsd.edu
- Fangyang Zheng
- Affiliation: School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, People’s Republic of China
- MR Author ID: 272367
- Email: 20190045@cqnu.edu.cn; franciszheng@yahoo.com
- Received by editor(s): August 27, 2022
- Received by editor(s) in revised form: March 17, 2023
- Published electronically: June 21, 2023
- Additional Notes: Fangyang Zheng is the corresponding author
The research was partially supported by NSFC grants # 12071050 and 12141101, Chongqing grant cstc2021ycjh-bgzxm0139, and was supported by the 111 Project D21024. - © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 6681-6707
- MSC (2020): Primary 53C55; Secondary 53C05
- DOI: https://doi.org/10.1090/tran/8956
- MathSciNet review: 4630788