Frobenius splitting, strong F-regularity, and small Cohen-Macaulay modules
HTML articles powered by AMS MathViewer
- by Melvin Hochster and Yongwei Yao;
- Trans. Amer. Math. Soc. 376 (2023), 6729-6765
- DOI: https://doi.org/10.1090/tran/8964
- Published electronically: June 29, 2023
- HTML | PDF | Request permission
Abstract:
Let $M$ be a finitely generated module over an (F-finite local) ring $R$ of prime characteristic $p >0$. Let ${}^e\!M$ denote the result of restricting scalars using the map $F^e\colon R \to R$, the $e\,$th iteration of the Frobenius endomorphism. Motivated in part by the fact that in certain circumstances the splitting of ${}^e\!M$ as $e$ grows can be used to prove the existence of small (i.e., finitely generated) maximal Cohen-Macaulay modules, we study splitting phenomena for ${}^e\!M$ from several points of view. In consequence, we are able to prove new results about when one has such splittings that generalize results previously known only in low dimension, we give new characterizations of when a ring is strongly F-regular, and we are able to prove new results on the existence of small maximal Cohen-Macaulay modules in the multi-graded case. In addition, we study certain corresponding questions when the ring is no longer assumed F-finite and purity is considered in place of splitting. We also answer a question, raised by Datta and Smith, by showing that a regular Noetherian domain, even in dimension 2, need not be very strongly F-regular.References
- Ian M. Aberbach, Extension of weakly and strongly F-regular rings by flat maps, J. Algebra 241 (2001), no. 2, 799â807. MR 1843326, DOI 10.1006/jabr.2001.8785
- Ian M. Aberbach and Graham J. Leuschke, The $F$-signature and strong $F$-regularity, Math. Res. Lett. 10 (2003), no. 1, 51â56. MR 1960123, DOI 10.4310/MRL.2003.v10.n1.a6
- Yves AndrĂ©, Weak functoriality of Cohen-Macaulay algebras, J. Amer. Math. Soc. 33 (2020), no. 2, 363â380. MR 4073864, DOI 10.1090/jams/937
- B. Bhatt, Cohen-Macaulayness of absolute integral closures, Preprint, arXiv:2008.08070 [math.AG], 2020.
- Winfried Bruns and JĂŒrgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
- R. Datta and T. Murayama, Excellence, F-singularities, and solidity, arXiv:2007.10383 [math.AC], 2020, With an Appendix by K. E. Smith.
- Rankeya Datta and Karen E. Smith, Correction to the article âFrobenius and valuation ringsâ [ MR3531362], Algebra Number Theory 11 (2017), no. 4, 1003â1007. MR 3665644, DOI 10.2140/ant.2017.11.1003
- R. Datta, N. Epstein, and K. Tucker, Mittag-Leffler modules and Frobenius, Preprint.
- David Eisenbud and Melvin Hochster, A Nullstellensatz with nilpotents and Zariskiâs main lemma on holomorphic functions, J. Algebra 58 (1979), no. 1, 157â161. MR 535850, DOI 10.1016/0021-8693(79)90196-0
- Alessandro De Stefani, Thomas Polstra, and Yongwei Yao, Globalizing F-invariants, Adv. Math. 350 (2019), 359â395. MR 3947648, DOI 10.1016/j.aim.2019.04.054
- Douglas Allen Hanes, Special conditions on maximal Cohen-Macaulay modules, and applications to the theory of multiplicities, ProQuest LLC, Ann Arbor, MI, 1999. Thesis (Ph.D.)âUniversity of Michigan. MR 2699070
- Douglas Hanes, On the Cohen-Macaulay modules of graded subrings, Trans. Amer. Math. Soc. 357 (2005), no. 2, 735â756. MR 2095629, DOI 10.1090/S0002-9947-04-03562-7
- Mitsuyasu Hashimoto, $F$-pure homomorphisms, strong $F$-regularity, and $F$-injectivity, Comm. Algebra 38 (2010), no. 12, 4569â4596. MR 2764840, DOI 10.1080/00927870903431241
- Raymond C. Heitmann, The direct summand conjecture in dimension three, Ann. of Math. (2) 156 (2002), no. 2, 695â712. MR 1933722, DOI 10.2307/3597204
- Raymond Heitmann and Linquan Ma, Big Cohen-Macaulay algebras and the vanishing conjecture for maps of Tor in mixed characteristic, Algebra Number Theory 12 (2018), no. 7, 1659â1674. MR 3871506, DOI 10.2140/ant.2018.12.1659
- M. Hochster, Non-openness of loci in Noetherian rings, Duke Math. J. 40 (1973), 215â219. MR 311653, DOI 10.1215/S0012-7094-73-04020-9
- Melvin Hochster, Topics in the homological theory of modules over commutative rings, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 24, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by American Mathematical Society, Providence, RI, 1975. Expository lectures from the CBMS Regional Conference held at the University of Nebraska, Lincoln, Neb., June 24â28, 1974. MR 371879, DOI 10.1090/cbms/024
- Melvin Hochster, Big Cohen-Macaulay modules and algebras and embeddability in rings of Witt vectors, Conference on Commutative Algebraâ1975 (Queenâs Univ., Kingston, Ont., 1975) Queenâs Univ., Kingston, ON, 1975, pp. 106â195. MR 396544
- Melvin Hochster, Big and small Cohen-Macaulay modules, Module theory (Proc. Special Session, Amer. Math. Soc., Univ. Washington, Seattle, Wash., 1977) Lecture Notes in Math., vol. 700, Springer, Berlin, 1979, pp. 119â142. MR 550433
- Melvin Hochster, Solid closure, Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992) Contemp. Math., vol. 159, Amer. Math. Soc., Providence, RI, 1994, pp. 103â172. MR 1266182, DOI 10.1090/conm/159/01508
- Melvin Hochster, Big Cohen-Macaulay algebras in dimension three via Heitmannâs theorem, J. Algebra 254 (2002), no. 2, 395â408. MR 1933876, DOI 10.1016/S0021-8693(02)00086-8
- M. Hochster, Foundations of tight closure theory, 276 pp., 2007, Lecture notes available at http://www.math.lsa.umich.edu/~hochster/711F07/fndtc.pdf.
- Melvin Hochster and Craig Huneke, Tight closure and strong $F$-regularity, MĂ©m. Soc. Math. France (N.S.) 38 (1989), 119â133. Colloque en lâhonneur de Pierre Samuel (Orsay, 1987). MR 1044348
- Melvin Hochster and Craig Huneke, Tight closure, invariant theory, and the Briançon-Skoda theorem, J. Amer. Math. Soc. 3 (1990), no. 1, 31â116. MR 1017784, DOI 10.1090/S0894-0347-1990-1017784-6
- Melvin Hochster and Craig Huneke, Infinite integral extensions and big Cohen-Macaulay algebras, Ann. of Math. (2) 135 (1992), no. 1, 53â89. MR 1147957, DOI 10.2307/2946563
- Melvin Hochster and Craig Huneke, $F$-regularity, test elements, and smooth base change, Trans. Amer. Math. Soc. 346 (1994), no. 1, 1â62. MR 1273534, DOI 10.1090/S0002-9947-1994-1273534-X
- Melvin Hochster and Craig Huneke, Tight closure of parameter ideals and splitting in module-finite extensions, J. Algebraic Geom. 3 (1994), no. 4, 599â670. MR 1297848
- M. Hochster and J. Jeffries, A Jacobian criterion for nonsingularity in mixed characteristic, Preprint, arXiv:2106.01996 [math.AC], 2021.
- Melvin Hochster and Joel L. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Advances in Math. 13 (1974), 115â175. MR 347810, DOI 10.1016/0001-8708(74)90067-X
- Melvin Hochster and Joel L. Roberts, The purity of the Frobenius and local cohomology, Advances in Math. 21 (1976), no. 2, 117â172. MR 417172, DOI 10.1016/0001-8708(76)90073-6
- M. Hochster and Y. Yao, Generic local duality and purity exponents, Preprint.
- Craig Huneke and Graham J. Leuschke, Two theorems about maximal Cohen-Macaulay modules, Math. Ann. 324 (2002), no. 2, 391â404. MR 1933863, DOI 10.1007/s00208-002-0343-3
- Ernst Kunz, Characterizations of regular local rings of characteristic $p$, Amer. J. Math. 91 (1969), 772â784. MR 252389, DOI 10.2307/2373351
- Ernst Kunz, On Noetherian rings of characteristic $p$, Amer. J. Math. 98 (1976), no. 4, 999â1013. MR 432625, DOI 10.2307/2374038
- Gennady Lyubeznik and Karen E. Smith, Strong and weak $F$-regularity are equivalent for graded rings, Amer. J. Math. 121 (1999), no. 6, 1279â1290. MR 1719806, DOI 10.1353/ajm.1999.0042
- Gennady Lyubeznik and Karen E. Smith, On the commutation of the test ideal with localization and completion, Trans. Amer. Math. Soc. 353 (2001), no. 8, 3149â3180. MR 1828602, DOI 10.1090/S0002-9947-01-02643-5
- Hideyuki Matsumura, Commutative algebra, W. A. Benjamin, Inc., New York, 1970. MR 266911
- P. Monsky, The Hilbert-Kunz function, Math. Ann. 263 (1983), no. 1, 43â49. MR 697329, DOI 10.1007/BF01457082
- Masayoshi Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 155856
- Hans Schoutens, Hochsterâs small MCM conjecture for three-dimensional weakly F-split rings, Comm. Algebra 45 (2017), no. 1, 262â274. MR 3556570, DOI 10.1080/00927872.2016.1206342
- Hans Schoutens, A differential-algebraic criterion for obtaining a small Cohen-Macaulay module, Proc. Amer. Math. Soc. 148 (2020), no. 10, 4165â4177. MR 4135286, DOI 10.1090/proc/15084
- Karen Ellen Smith, Tight closure of parameter ideals and F-rationality, ProQuest LLC, Ann Arbor, MI, 1993. Thesis (Ph.D.)âUniversity of Michigan. MR 2689065
- Kevin Tucker, $F$-signature exists, Invent. Math. 190 (2012), no. 3, 743â765. MR 2995185, DOI 10.1007/s00222-012-0389-0
- Yongwei Yao, Observations on the $F$-signature of local rings of characteristic $p$, J. Algebra 299 (2006), no. 1, 198â218. MR 2225772, DOI 10.1016/j.jalgebra.2005.08.013
- Yongwei Yao, The direct sum decomposability of $^e\!M$ in dimension 2, Michigan Math. J. 57 (2008), 745â755. Special volume in honor of Melvin Hochster. MR 2492479, DOI 10.1307/mmj/1220879435
Bibliographic Information
- Melvin Hochster
- Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
- MR Author ID: 86705
- ORCID: 0000-0002-9158-6486
- Email: hochster@umich.edu
- Yongwei Yao
- Affiliation: Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia 30303
- MR Author ID: 685921
- Email: yyao@gsu.edu
- Received by editor(s): February 8, 2022
- Received by editor(s) in revised form: April 8, 2023
- Published electronically: June 29, 2023
- Additional Notes: Both authors were partially supported by National Science Foundation grants DMS-9970702, DMS-0400633, and DMS-0901145. The first author was also supported by DMS-1401384 and DMS-1902116, and the second author by DMS-0700554.
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 6729-6765
- MSC (2020): Primary 13A35; Secondary 13D45, 13C14, 13F40, 13H05, 13H10
- DOI: https://doi.org/10.1090/tran/8964
- MathSciNet review: 4630790