A universal bound in the dimensional Brunn-Minkowski inequality for log-concave measures
HTML articles powered by AMS MathViewer
- by Galyna V. Livshyts;
- Trans. Amer. Math. Soc. 376 (2023), 6663-6680
- DOI: https://doi.org/10.1090/tran/8976
- Published electronically: June 16, 2023
- HTML | PDF | Request permission
Abstract:
We show that for any even log-concave probability measure $\mu$ on $\mathbb {R}^n$, any pair of symmetric convex sets $K$ and $L$, and any $\lambda \in [0,1]$, \begin{equation*} \mu ((1-\lambda ) K+\lambda L)^{c_n}\geq (1-\lambda ) \mu (K)^{c_n}+\lambda \mu (L)^{c_n}, \end{equation*} where $c_n\geq n^{-4-o(1)}$. This constitutes progress towards the dimensional Brunn-Minkowski conjecture (see Richard J. Gardner and Artem Zvavitch [Tran. Amer. Math. Soc. 362 (2010), pp. 5333–5353]; Andrea Colesanti, Galyna V. Livshyts, Arnaud Marsiglietti [J. Funct. Anal. 273 (2017), pp. 1120–1139]). Moreover, our bound improves for various special classes of log-concave measures.References
- Shiri Artstein-Avidan, Apostolos Giannopoulos, and Vitali D. Milman, Asymptotic geometric analysis. Part I, Mathematical Surveys and Monographs, vol. 202, American Mathematical Society, Providence, RI, 2015. MR 3331351, DOI 10.1090/surv/202
- Frank Barthe and Bo’az Klartag, Spectral gaps, symmetries and log-concave perturbations, Bull. Hellenic Math. Soc. 64 (2020), 1–31. MR 4075908
- Keith Ball, Logarithmically concave functions and sections of convex sets in $\textbf {R}^n$, Studia Math. 88 (1988), no. 1, 69–84. MR 932007, DOI 10.4064/sm-88-1-69-84
- S. G. Bobkov and M. Ledoux, From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities, Geom. Funct. Anal. 10 (2000), no. 5, 1028–1052. MR 1800062, DOI 10.1007/PL00001645
- Christer Borell, The Brunn-Minkowski inequality in Gauss space, Invent. Math. 30 (1975), no. 2, 207–216. MR 399402, DOI 10.1007/BF01425510
- C. Borell, Convex set functions in $d$-space, Period. Math. Hungar. 6 (1975), no. 2, 111–136. MR 404559, DOI 10.1007/BF02018814
- Christer Borell, The Ehrhard inequality, C. R. Math. Acad. Sci. Paris 337 (2003), no. 10, 663–666 (English, with English and French summaries). MR 2030108, DOI 10.1016/j.crma.2003.09.031
- Károly J. Böröczky, Erwin Lutwak, Deane Yang, and Gaoyong Zhang, The log-Brunn-Minkowski inequality, Adv. Math. 231 (2012), no. 3-4, 1974–1997. MR 2964630, DOI 10.1016/j.aim.2012.07.015
- Károly J. Böröczky, Erwin Lutwak, Deane Yang, and Gaoyong Zhang, The logarithmic Minkowski problem, J. Amer. Math. Soc. 26 (2013), no. 3, 831–852. MR 3037788, DOI 10.1090/S0894-0347-2012-00741-3
- Károly J. Böröczky, Erwin Lutwak, Deane Yang, and Gaoyong Zhang, Affine images of isotropic measures, J. Differential Geom. 99 (2015), no. 3, 407–442. MR 3316972
- Herm Jan Brascamp and Elliott H. Lieb, On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation, J. Functional Analysis 22 (1976), no. 4, 366–389. MR 450480, DOI 10.1016/0022-1236(76)90004-5
- N. G. de Bruijn, Asymptotic methods in analysis, 3rd ed., Dover Publications, Inc., New York, 1981. MR 671583
- Yuansi Chen, An almost constant lower bound of the isoperimetric coefficient in the KLS conjecture, Geom. Funct. Anal. 31 (2021), no. 1, 34–61. MR 4244847, DOI 10.1007/s00039-021-00558-4
- Andrea Colesanti, From the Brunn-Minkowski inequality to a class of Poincaré-type inequalities, Commun. Contemp. Math. 10 (2008), no. 5, 765–772. MR 2446898, DOI 10.1142/S0219199708002971
- Andrea Colesanti, Daniel Hug, and Eugenia Saorín Gómez, A characterization of some mixed volumes via the Brunn-Minkowski inequality, J. Geom. Anal. 24 (2014), no. 2, 1064–1091. MR 3192306, DOI 10.1007/s12220-012-9364-7
- Andrea Colesanti, Daniel Hug, and Eugenia Saorín Gómez, Monotonicity and concavity of integral functionals involving area measures of convex bodies, Commun. Contemp. Math. 19 (2017), no. 2, 1650033, 26. MR 3611665, DOI 10.1142/S0219199716500334
- Andrea Colesanti, Galyna V. Livshyts, and Arnaud Marsiglietti, On the stability of Brunn-Minkowski type inequalities, J. Funct. Anal. 273 (2017), no. 3, 1120–1139. MR 3653949, DOI 10.1016/j.jfa.2017.04.008
- A. Colesanti and G. Livshyts, Uniqueness of a smooth convex body with a uniform cone volume measure in the neighborhood of a ball, Adv. Anal. Geom. 2, (2020).
- D. Cordero-Erausquin, M. Fradelizi, and B. Maurey, The (B) conjecture for the Gaussian measure of dilates of symmetric convex sets and related problems, J. Funct. Anal. 214 (2004), no. 2, 410–427. MR 2083308, DOI 10.1016/j.jfa.2003.12.001
- Dario Cordero-Erausquin and Bo’az Klartag, Interpolations, convexity and geometric inequalities, Geometric aspects of functional analysis, Lecture Notes in Math., vol. 2050, Springer, Heidelberg, 2012, pp. 151–168. MR 2985131, DOI 10.1007/978-3-642-29849-3_{9}
- Dario Cordero-Erausquin and Liran Rotem, Improved log-concavity for rotationally invariant measures of symmetric convex sets, Ann. Probab. 51 (2023), no. 3, 987–1003. MR 4583060, DOI 10.1214/22-aop1604
- Antoine Ehrhard, Symétrisation dans l’espace de Gauss, Math. Scand. 53 (1983), no. 2, 281–301 (French). MR 745081, DOI 10.7146/math.scand.a-12035
- Antoine Ehrhard, Éléments extrémaux pour les inégalités de Brunn-Minkowski gaussiennes, Ann. Inst. H. Poincaré Probab. Statist. 22 (1986), no. 2, 149–168 (French, with English summary). MR 850753
- Ronen Eldan, Thin shell implies spectral gap up to polylog via a stochastic localization scheme, Geom. Funct. Anal. 23 (2013), no. 2, 532–569. MR 3053755, DOI 10.1007/s00039-013-0214-y
- Alexandros Eskenazis, Piotr Nayar, and Tomasz Tkocz, Gaussian mixtures: entropy and geometric inequalities, Ann. Probab. 46 (2018), no. 5, 2908–2945. MR 3846841, DOI 10.1214/17-AOP1242
- Alexandros Eskenazis and Georgios Moschidis, The dimensional Brunn-Minkowski inequality in Gauss space, J. Funct. Anal. 280 (2021), no. 6, Paper No. 108914, 19. MR 4193767, DOI 10.1016/j.jfa.2020.108914
- M. Fradelizi, Sections of convex bodies through their centroid, Arch. Math. (Basel) 69 (1997), no. 6, 515–522. MR 1480519, DOI 10.1007/s000130050154
- R. J. Gardner, The Brunn-Minkowski inequality, Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 3, 355–405. MR 1898210, DOI 10.1090/S0273-0979-02-00941-2
- Richard J. Gardner and Artem Zvavitch, Gaussian Brunn-Minkowski inequalities, Trans. Amer. Math. Soc. 362 (2010), no. 10, 5333–5353. MR 2657682, DOI 10.1090/S0002-9947-2010-04891-3
- Lars Hörmander, Notions of convexity, Progress in Mathematics, vol. 127, Birkhäuser Boston, Inc., Boston, MA, 1994. MR 1301332
- Johannes Hosle, Alexander V. Kolesnikov, and Galyna V. Livshyts, On the $L_p$-Brunn-Minkowski and dimensional Brunn-Minkowski conjectures for log-concave measures, J. Geom. Anal. 31 (2021), no. 6, 5799–5836. MR 4267627, DOI 10.1007/s12220-020-00505-z
- A. Jambulapati, Y.-T. Lee, and S. Vempala, A slightly improved bound for the KLS constant, preprint.
- R. Kannan, L. Lovász, and M. Simonovits, Isoperimetric problems for convex bodies and a localization lemma, Discrete Comput. Geom. 13 (1995), no. 3-4, 541–559. MR 1318794, DOI 10.1007/BF02574061
- Alexander V. Kolesnikov and Emanuel Milman, Riemannian metrics on convex sets with applications to Poincaré and log-Sobolev inequalities, Calc. Var. Partial Differential Equations 55 (2016), no. 4, Art. 77, 36. MR 3514409, DOI 10.1007/s00526-016-1018-3
- Alexander V. Kolesnikov and Emanuel Milman, Brascamp-Lieb-type inequalities on weighted Riemannian manifolds with boundary, J. Geom. Anal. 27 (2017), no. 2, 1680–1702. MR 3625169, DOI 10.1007/s12220-016-9736-5
- Alexander V. Kolesnikov and Emanuel Milman, Poincaré and Brunn-Minkowski inequalities on the boundary of weighted Riemannian manifolds, Amer. J. Math. 140 (2018), no. 5, 1147–1185. MR 3862061, DOI 10.1353/ajm.2018.0027
- Alexander V. Kolesnikov and Emanuel Milman, Sharp Poincaré-type inequality for the Gaussian measure on the boundary of convex sets, Geometric aspects of functional analysis, Lecture Notes in Math., vol. 2169, Springer, Cham, 2017, pp. 221–234. MR 3645125
- Alexander V. Kolesnikov and Emanuel Milman, Local $L^p$-Brunn-Minkowski inequalities for $p<1$, Mem. Amer. Math. Soc. 277 (2022), no. 1360, v+78. MR 4438690, DOI 10.1090/memo/1360
- Alexander V. Kolesnikov and Galyna V. Livshyts, On the Gardner-Zvavitch conjecture: symmetry in inequalities of Brunn-Minkowski type, Adv. Math. 384 (2021), Paper No. 107689, 23. MR 4238914, DOI 10.1016/j.aim.2021.107689
- Alexander V. Kolesnikov and Galyna V. Livshyts, On the local version of the Log-Brunn–Minkowski conjecture and some new related geometric inequalities, Int. Math. Res. Not. IMRN 18 (2022), 14427–14453. MR 4485961, DOI 10.1093/imrn/rnab142
- B. Klartag, A central limit theorem for convex sets, Invent. Math. 168 (2007), no. 1, 91–131. MR 2285748, DOI 10.1007/s00222-006-0028-8
- B. Klartag, Power-law estimates for the central limit theorem for convex sets, J. Funct. Anal. 245 (2007), no. 1, 284–310. MR 2311626, DOI 10.1016/j.jfa.2006.12.005
- Bo’az Klartag, A Berry-Esseen type inequality for convex bodies with an unconditional basis, Probab. Theory Related Fields 145 (2009), no. 1-2, 1–33. MR 2520120, DOI 10.1007/s00440-008-0158-6
- Bo’az Klartag and Joseph Lehec, Bourgain’s slicing problem and KLS isoperimetry up to polylog, Geom. Funct. Anal. 32 (2022), no. 5, 1134–1159. MR 4498841, DOI 10.1007/s00039-022-00612-9
- Bo’az Klartag and Emanuel Milman, Centroid bodies and the logarithmic Laplace transform—a unified approach, J. Funct. Anal. 262 (2012), no. 1, 10–34. MR 2852254, DOI 10.1016/j.jfa.2011.09.003
- B. Klartag and V. D. Milman, Geometry of log-concave functions and measures, Geom. Dedicata 112 (2005), 169–182. MR 2163897, DOI 10.1007/s10711-004-2462-3
- Yin Tat Lee and Santosh S. Vempala, Eldan’s stochastic localization and the KLS hyperplane conjecture: an improved lower bound for expansion, 58th Annual IEEE Symposium on Foundations of Computer Science—FOCS 2017, IEEE Computer Soc., Los Alamitos, CA, 2017, pp. 998–1007. MR 3734299, DOI 10.1109/FOCS.2017.96
- RafałLatała and Krzysztof Oleszkiewicz, Gaussian measures of dilatations of convex symmetric sets, Ann. Probab. 27 (1999), no. 4, 1922–1938. MR 1742894, DOI 10.1214/aop/1022677554
- G. V. Livshyts, On a conjectural symmetric version of Ehrhard’s inequality, Preprint, arXiv:2103.11433.
- Galyna Livshyts, Arnaud Marsiglietti, Piotr Nayar, and Artem Zvavitch, On the Brunn-Minkowski inequality for general measures with applications to new isoperimetric-type inequalities, Trans. Amer. Math. Soc. 369 (2017), no. 12, 8725–8742. MR 3710641, DOI 10.1090/tran/6928
- Galyna V. Livshyts, An extension of Minkowski’s theorem and its applications to questions about projections for measures, Adv. Math. 356 (2019), 106803, 40. MR 4008520, DOI 10.1016/j.aim.2019.106803
- Galyna Livshyts, Maximal surface area of a convex set in $\Bbb R^n$ with respect to log concave rotation invariant measures, Geometric aspects of functional analysis, Lecture Notes in Math., vol. 2116, Springer, Cham, 2014, pp. 355–383. MR 3364697, DOI 10.1007/978-3-319-09477-9_{2}3
- Galyna Livshyts, Maximal surface area of a convex set in $\Bbb {R}^n$ with respect to exponential rotation invariant measures, J. Math. Anal. Appl. 404 (2013), no. 2, 231–238. MR 3045169, DOI 10.1016/j.jmaa.2013.03.014
- L. Lovaśz and S. Vempala, The geometry of logconcave functions and sampling algorithms, Random Structures and Alg. 4 (1993), 359-412.
- L. A. Lyusternik, Die Brunn-Minkowskische Ungleichung für beliebige messbare Mengen, C. R. Acad. Sci. URSS 8 (1935), 55–58.
- E. Milman, A sharp centro-affine isospectral inequality of Szego-Weinberger type and the $L^p$-Minkowski problem, manuscript.
- E. Milman, Centro-affine differential geometry and the log-Minkowski problem, manuscript.
- E. Milman, A sharp centro-affine isospectral inequality of Szegö-Weinberger type and the $L^p$-Minkowski problem, preprint.
- Piotr Nayar and Tomasz Tkocz, A note on a Brunn-Minkowski inequality for the Gaussian measure, Proc. Amer. Math. Soc. 141 (2013), no. 11, 4027–4030. MR 3091793, DOI 10.1090/S0002-9939-2013-11609-6
- Christos Saroglou, Remarks on the conjectured log-Brunn-Minkowski inequality, Geom. Dedicata 177 (2015), 353–365. MR 3370038, DOI 10.1007/s10711-014-9993-z
- Christos Saroglou, More on logarithmic sums of convex bodies, Mathematika 62 (2016), no. 3, 818–841. MR 3521355, DOI 10.1112/S0025579316000061
- Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Second expanded edition, Encyclopedia of Mathematics and its Applications, vol. 151, Cambridge University Press, Cambridge, 2014. MR 3155183
Bibliographic Information
- Galyna V. Livshyts
- Affiliation: School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia
- MR Author ID: 1015863
- ORCID: 0000-0003-1177-5541
- Email: glivshyts6@math.gatech.edu
- Received by editor(s): March 8, 2022
- Received by editor(s) in revised form: March 14, 2023
- Published electronically: June 16, 2023
- Additional Notes: The author was supported by the NSF CAREER DMS-1753260.
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 6663-6680
- MSC (2020): Primary 52A23, 52A38
- DOI: https://doi.org/10.1090/tran/8976
- MathSciNet review: 4630787