Decay of Fourier coefficients for Furstenberg measures
HTML articles powered by AMS MathViewer
- by Tien-Cuong Dinh, Lucas Kaufmann and Hao Wu;
- Trans. Amer. Math. Soc. 376 (2023), 6873-6926
- DOI: https://doi.org/10.1090/tran/8882
- Published electronically: July 20, 2023
- HTML | PDF | Request permission
Abstract:
Let $\nu$ be the Furstenberg measure associated with a non-elementary probability measure $\mu$ on $SL_2(\mathbb {R})$. We show that, when $\mu$ has a finite second moment, the Fourier coefficients of $\nu$ tend to zero at infinity. In other words, $\nu$ is a Rajchman measure. This improves a recent result of Jialun Li.References
- Yves Benoist and Jean-François Quint, Random walks on projective spaces, Compos. Math. 150 (2014), no. 9, 1579–1606. MR 3260142, DOI 10.1112/S0010437X1400726X
- Yves Benoist and Jean-François Quint, Central limit theorem for linear groups, Ann. Probab. 44 (2016), no. 2, 1308–1340. MR 3474473, DOI 10.1214/15-AOP1002
- Yves Benoist and Jean-François Quint, Random walks on reductive groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 62, Springer, Cham, 2016. MR 3560700, DOI 10.1007/978-3-319-47721-3
- Philippe Bougerol and Jean Lacroix, Products of random matrices with applications to Schrödinger operators, Progress in Probability and Statistics, vol. 8, Birkhäuser Boston, Inc., Boston, MA, 1985. MR 886674, DOI 10.1007/978-1-4684-9172-2
- Jean Bourgain and Semyon Dyatlov, Fourier dimension and spectral gaps for hyperbolic surfaces, Geom. Funct. Anal. 27 (2017), no. 4, 744–771. MR 3678500, DOI 10.1007/s00039-017-0412-0
- Jean-Baptiste Boyer, The rate of convergence for the renewal theorem in $\mathbb R^d$, arXiv:1603.07214, 2016.
- Tien-Cuong Dinh, Lucas Kaufmann, and Hao Wu, Dynamics of holomorphic correspondences on Riemann surfaces, Internat. J. Math. 31 (2020), no. 5, 2050036, 21. MR 4104599, DOI 10.1142/S0129167X20500366
- Tien-Cuong Dinh, Lucas Kaufmann, and Hao Wu, Products of random matrices: a dynamical point of view, Pure Appl. Math. Q. 17 (2021), no. 3, 933–969. MR 4278953, DOI 10.4310/PAMQ.2021.v17.n3.a4
- Tien-Cuong Dinh, Lucas Kaufmann, and Hao Wu, Random walks on $\textrm {SL}_2(\Bbb C)$: spectral gap and limit theorems, Probab. Theory Related Fields 186 (2023), no. 3-4, 877–955. MR 4603397, DOI 10.1007/s00440-023-01191-y
- Y. Guivarc’h and É. Le Page, Spectral gap properties for linear random walks and Pareto’s asymptotics for affine stochastic recursions, Ann. Inst. Henri Poincaré Probab. Stat. 52 (2016), no. 2, 503–574 (English, with English and French summaries). MR 3498000, DOI 10.1214/15-AIHP668
- Jean-Pierre Kahane and Raphaël Salem, Ensembles parfaits et séries trigonométriques, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1301, Hermann, Paris, 1963 (French). MR 160065
- Tosio Kato, Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition. MR 1335452, DOI 10.1007/978-3-642-66282-9
- Harry Kesten, Renewal theory for functionals of a Markov chain with general state space, Ann. Probability 2 (1974), 355–386. MR 365740, DOI 10.1214/aop/1176996654
- Frederick W. King, Hilbert transforms. Vol. 2, Encyclopedia of Mathematics and its Applications, vol. 125, Cambridge University Press, Cambridge, 2009. MR 2542215
- Thomas W. Körner, Sets of uniqueness, L’émergence de l’analyse harmonique abstraite (1930–1950) (Paris, 1991) Cahiers Sém. Hist. Math. Sér. 2, vol. 2, Univ. Paris VI, Paris, 1992, pp. 51–63. MR 1187302
- Émile Le Page, Théorèmes limites pour les produits de matrices aléatoires, Probability measures on groups (Oberwolfach, 1981) Lecture Notes in Math., vol. 928, Springer, Berlin-New York, 1982, pp. 258–303 (French). MR 669072
- Jialun Li, Decrease of Fourier coefficients of stationary measures, Math. Ann. 372 (2018), no. 3-4, 1189–1238. MR 3880297, DOI 10.1007/s00208-018-1743-3
- Jialun Li, Fourier decay, renewal theorem and spectral gaps for random walks on split semisimple Lie groups, Ann. Sci. Éc. Norm. Supér. (4) 55 (2022), no. 6, 1613–1686 (English, with English and French summaries). MR 4517684, DOI 10.24033/asens.2525
- Jialun Li, Frédéric Naud, and Wenyu Pan, Kleinian Schottky groups, Patterson-Sullivan measures, and Fourier decay, Duke Math. J. 170 (2021), no. 4, 775–825. With an appendix by Li. MR 4280090, DOI 10.1215/00127094-2020-0058
- Jialun Li and Tuomas Sahlsten, Fourier transform of self-affine measures, Adv. Math. 374 (2020), 107349, 35. MR 4133521, DOI 10.1016/j.aim.2020.107349
- Russell Lyons, Seventy years of Rajchman measures, Proceedings of the Conference in Honor of Jean-Pierre Kahane (Orsay, 1993), 1995, pp. 363–377 (English, with English and French summaries). MR 1364897
- Pertti Mattila, Fourier analysis and Hausdorff dimension, Cambridge Studies in Advanced Mathematics, vol. 150, Cambridge University Press, Cambridge, 2015. MR 3617376, DOI 10.1017/CBO9781316227619
- Hans Triebel, Interpolation theory, function spaces, differential operators, North-Holland Mathematical Library, vol. 18, North-Holland Publishing Co., Amsterdam-New York, 1978. MR 503903
Bibliographic Information
- Tien-Cuong Dinh
- Affiliation: Department of Mathematics, National University of Singapore - 10, Lower Kent Ridge Road, Singapore 119076, Singapore
- MR Author ID: 608547
- Email: matdtc@nus.edu.sg
- Lucas Kaufmann
- Affiliation: Center for Complex Geometry, Institute for Basic Science (IBS) - 55, Expo-ro, Yuseong-gu, Daejeon 34126, South Korea; and Institut Denis Poisson, CNRS, Université d’Orléans, Rue de Chartres B.P. 6759, 45067 Orléans Cedex 2, France
- MR Author ID: 1224314
- ORCID: 0000-0001-9043-4862
- Email: lucas.kaufmann@univ-orleans.fr
- Hao Wu
- Affiliation: Department of Mathematics, National University of Singapore - 10, Lower Kent Ridge Road, Singapore 119076, Singapore
- Email: matwu@nus.edu.sg
- Received by editor(s): March 31, 2022
- Received by editor(s) in revised form: November 25, 2022
- Published electronically: July 20, 2023
- Additional Notes: This work was supported by the NUS and MOE grants AcRF Tier 1 R-146-000-259-114, R-146-000-299-114 and MOE-T2EP20120-0010. The second author was supported by the Institute for Basic Science (IBS-R032-D1)
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 6873-6926
- MSC (2020): Primary 60B15, 60B20, 60K15; Secondary 42A16, 37C30
- DOI: https://doi.org/10.1090/tran/8882
- MathSciNet review: 4636680