Boundaries of dense subgroups of totally disconnected groups
HTML articles powered by AMS MathViewer
- by Michael Björklund, Yair Hartman and Hanna Oppelmayer;
- Trans. Amer. Math. Soc. 376 (2023), 7045-7085
- DOI: https://doi.org/10.1090/tran/8970
- Published electronically: July 17, 2023
- HTML | PDF | Request permission
Abstract:
Let $\Gamma$ be a countable discrete group and let $H$ be a lcsc totally disconnected group, $L$ a compact open subgroup of $H$, and $\rho : \Gamma \rightarrow H$ a homomorphism with dense image. In this paper we construct, for every bi-$L$-invariant probability measure $\theta$ on $H$, an explicit Furstenberg discretization $\tau$ of $\theta$ such that the Poisson boundary $(B_\theta ,\nu _\theta )$ of $(H,\theta )$ is a $\tau$-boundary, where $\Gamma$ acts on $B_\theta$ via the homomorphism $\rho$. We also provide several criteria for when this $\tau$-boundary is maximal.
Our technique can for instance be used to construct examples of finitely supported random walks on certain lamplighter groups and solvable Baumslag-Solitar groups, whose Poisson boundaries are prime, but not $L^p$-irreducible for any $p \geq 1$, answering a conjecture of Bader-Muchnik in the negative.
Furthermore, we provide the first example of a countable discrete group $\Gamma$ and two spread-out probability measures $\tau _1$ and $\tau _2$ on $\Gamma$ such that the boundary entropy spectrum of $(\Gamma ,\tau _1)$ is an interval, while the boundary entropy spectrum of $(\Gamma ,\tau _2)$ is a Cantor set.
References
- Claire Anantharaman-Delaroche, Invariant proper metrics on coset spaces, Topology Appl. 160 (2013), no. 3, 546–552. MR 3010362, DOI 10.1016/j.topol.2013.01.001
- Claire Anantharaman-Delaroche, Approximation properties for coset spaces and their operator algebras, The varied landscape of operator theory, Theta Ser. Adv. Math., vol. 17, Theta, Bucharest, 2014, pp. 23–45. MR 3409305
- Claire Anantharaman-Delaroche, Amenable actions preserving a locally finite metric, Expo. Math. 36 (2018), no. 3-4, 278–301. MR 3907333, DOI 10.1016/j.exmath.2018.06.002
- Robert Azencott, Espaces de Poisson des groupes localement compacts, Lecture Notes in Mathematics, Vol. 148, Springer-Verlag, Berlin-New York, 1970 (French). MR 501376, DOI 10.1007/BFb0059352
- Uri Bader and Jan Dymara, Boundary unitary representations—right-angled hyperbolic buildings, J. Mod. Dyn. 10 (2016), 413–437. MR 3549632, DOI 10.3934/jmd.2016.10.413
- Uri Bader and Roman Muchnik, Boundary unitary representations—irreducibility and rigidity, J. Mod. Dyn. 5 (2011), no. 1, 49–69. MR 2787597, DOI 10.3934/jmd.2011.5.49
- Uri Bader and Yehuda Shalom, Factor and normal subgroup theorems for lattices in products of groups, Invent. Math. 163 (2006), no. 2, 415–454. MR 2207022, DOI 10.1007/s00222-005-0469-5
- Werner Ballmann and François Ledrappier, Discretization of positive harmonic functions on Riemannian manifolds and Martin boundary, Actes de la Table Ronde de Géométrie Différentielle (Luminy, 1992) Sémin. Congr., vol. 1, Soc. Math. France, Paris, 1996, pp. 77–92 (English, with English and French summaries). MR 1427756
- B. Bárány, M. Pollicott, and K. Simon, Stationary measures for projective transformations: the Blackwell and Furstenberg measures, J. Stat. Phys. 148 (2012), no. 3, 393–421. MR 2969625, DOI 10.1007/s10955-012-0541-7
- Yves Benoist and Jean-François Quint, On the regularity of stationary measures, Israel J. Math. 226 (2018), no. 1, 1–14. MR 3819684, DOI 10.1007/s11856-018-1689-x
- Jean Bourgain, Finitely supported measures on $SL_2(\Bbb R)$ which are absolutely continuous at infinity, Geometric aspects of functional analysis, Lecture Notes in Math., vol. 2050, Springer, Heidelberg, 2012, pp. 133–141. MR 2985129, DOI 10.1007/978-3-642-29849-3_{7}
- Lewis Bowen, Random walks on random coset spaces with applications to Furstenberg entropy, Invent. Math. 196 (2014), no. 2, 485–510. MR 3193754, DOI 10.1007/s00222-013-0473-0
- Lewis Bowen, Yair Hartman, and Omer Tamuz, Generic stationary measures and actions, Trans. Amer. Math. Soc. 369 (2017), no. 7, 4889–4929. MR 3632554, DOI 10.1090/tran/6803
- E. Breuillard and T. Gelander, A topological Tits alternative, Ann. of Math. (2) 166 (2007), no. 2, 427–474. MR 2373146, DOI 10.4007/annals.2007.166.427
- Jérémie Brieussel and Ryokichi Tanaka, Discrete random walks on the group Sol, Israel J. Math. 208 (2015), no. 1, 291–321. MR 3416921, DOI 10.1007/s11856-015-1200-x
- S. Brofferio, Poisson boundary for finitely generated groups of rational affinities, J. Math. Sci. (N.Y.) 156 (2009), no. 1, 1–10. Functional analysis. MR 2760309, DOI 10.1007/s10958-008-9253-6
- Sara Brofferio, The Poisson boundary of random rational affinities, Ann. Inst. Fourier (Grenoble) 56 (2006), no. 2, 499–515 (English, with English and French summaries). MR 2226025, DOI 10.5802/aif.2191
- Sara Brofferio, A construction of the measurable Poisson boundary: from discrete to continuous groups, Groups, graphs and random walks, London Math. Soc. Lecture Note Ser., vol. 436, Cambridge Univ. Press, Cambridge, 2017, pp. 120–136. MR 3644006
- Sara Brofferio and Bruno Schapira, Poisson boundary of $\textrm {GL}_d(\Bbb Q)$, Israel J. Math. 185 (2011), 125–140. MR 2837130, DOI 10.1007/s11856-011-0103-8
- Peter Burton, Martino Lupini, and Omer Tamuz, Weak equivalence of stationary actions and the entropy realization problem, Preprint, arXiv:1603.05013.
- Pierre-Emmanuel Caprace and Tom De Medts, Simple locally compact groups acting on trees and their germs of automorphisms, Transform. Groups 16 (2011), no. 2, 375–411. MR 2806497, DOI 10.1007/s00031-011-9131-z
- D. I. Cartwright, V. A. Kaĭmanovich, and W. Woess, Random walks on the affine group of local fields and of homogeneous trees, Ann. Inst. Fourier (Grenoble) 44 (1994), no. 4, 1243–1288 (English, with English and French summaries). MR 1306556, DOI 10.5802/aif.1433
- Donald I. Cartwright and P. M. Soardi, Convergence to ends for random walks on the automorphism group of a tree, Proc. Amer. Math. Soc. 107 (1989), no. 3, 817–823. MR 984784, DOI 10.1090/S0002-9939-1989-0984784-5
- Chris Connell and Roman Muchnik, Harmonicity of quasiconformal measures and Poisson boundaries of hyperbolic spaces, Geom. Funct. Anal. 17 (2007), no. 3, 707–769. MR 2346273, DOI 10.1007/s00039-007-0608-9
- Chris Connell and Roman Muchnik, Harmonicity of Gibbs measures, Duke Math. J. 137 (2007), no. 3, 461–509. MR 2309151, DOI 10.1215/S0012-7094-07-13732-3
- Darren Creutz, Dynamics of group actions on quasi-invariant measure spaces, Ph.D. Thesis, UCLA, http://www.dcreutz.com/publications/Creutz_2011_Dissertation.pdf.
- Johannes Cuno and Ecaterina Sava-Huss, Random walks on Baumslag-Solitar groups, Israel J. Math. 228 (2018), no. 2, 627–663. MR 3874855, DOI 10.1007/s11856-018-1775-0
- Bertrand Deroin and Romain Dujardin, Lyapunov exponents for surface group representations, Comm. Math. Phys. 340 (2015), no. 2, 433–469. MR 3397023, DOI 10.1007/s00220-015-2469-7
- Artem Dudko, On irreducibility of Koopman representations corresponding to measure contracting actions, Groups Geom. Dyn. 12 (2018), no. 4, 1417–1427. MR 3874646, DOI 10.4171/GGD/473
- Harry Furstenberg, A Poisson formula for semi-simple Lie groups, Ann. of Math. (2) 77 (1963), 335–386. MR 146298, DOI 10.2307/1970220
- Harry Furstenberg, Noncommuting random products, Trans. Amer. Math. Soc. 108 (1963), 377–428. MR 163345, DOI 10.1090/S0002-9947-1963-0163345-0
- Hillel Furstenberg, Random walks and discrete subgroups of Lie groups, Advances in Probability and Related Topics, vol. 1, Dekker, New York, 1971, pp. 1–63.
- Hillel Furstenberg, Boundary theory and stochastic processes on homogeneous spaces, Proc. Symp. Pure Math., vol. 26,American Mathematical Society, Providence, RI, 1973, pp. 193–229.
- Hillel Furstenberg and Eli Glasner, Stationary dynamical systems, Dynamical numbers—interplay between dynamical systems and number theory, Contemp. Math., vol. 532, Amer. Math. Soc., Providence, RI, 2010, pp. 1–28. MR 2762131, DOI 10.1090/conm/532/10481
- Światosław R. Gal and Tadeusz Januszkiewicz, New a-T-menable HNN-extensions, J. Lie Theory 13 (2003), no. 2, 383–385. MR 2003149
- Yves Guivarc’h, Lizhen Ji, and J. C. Taylor, Compactifications of symmetric spaces, Progress in Mathematics, vol. 156, Birkhäuser Boston, Inc., Boston, MA, 1998. MR 1633171
- J. A. Guthrie and J. E. Nymann, The topological structure of the set of subsums of an infinite series, Colloq. Math. 55 (1988), no. 2, 323–327. MR 978930, DOI 10.4064/cm-55-2-323-327
- Yair Hartman and Mehrdad Kalantar, Stationary C*-dynamical systems, Preprint, arXiv:1712.10133.
- Hans Hornich, Über beliebige Teilsummen absolut konvergenter Reihen, Monatsh. Math. Phys. 49 (1941), 316–320 (German). MR 6372, DOI 10.1007/BF01707309
- Yasutaka Ihara, On discrete subgroups of the two by two projective linear group over ${\mathfrak {p}}$-adic fields, J. Math. Soc. Japan 18 (1966), 219–235. MR 223463, DOI 10.2969/jmsj/01830219
- Wojciech Jaworski, A Poisson formula for solvable Lie groups, J. Anal. Math. 68 (1996), 183–208. MR 1403256, DOI 10.1007/BF02790209
- Wojciech Jaworski, Random walks on almost connected locally compact groups: boundary and convergence, J. Anal. Math. 74 (1998), 235–273. MR 1631666, DOI 10.1007/BF02819452
- Vadim A. Kaimanovich, Poisson boundaries of random walks on discrete solvable groups, Probability Measures on Groups, X (Oberwolfach, 1990), Plenum, New York, 1991, pp. 205–238.
- Vadim A. Kaimanovich, The Poisson formula for groups with hyperbolic properties, Ann. of Math. (2) 152 (2000), no. 3, 659–692. MR 1815698, DOI 10.2307/2661351
- Vadim A. Kaimanovich, The Poisson boundary of amenable extensions, Monatsh. Math. 136 (2002), no. 1, 9–15. MR 1908077, DOI 10.1007/s006050200030
- V. A. Kaĭmanovich and A. M. Vershik, Random walks on discrete groups: boundary and entropy, Ann. Probab. 11 (1983), no. 3, 457–490. MR 704539, DOI 10.1214/aop/1176993497
- Vadim A. Kaimanovich and Wolfgang Woess, Boundary and entropy of space homogeneous Markov chains, Ann. Probab. 30 (2002), no. 1, 323–363. MR 1894110, DOI 10.1214/aop/1020107770
- Sôichi Kakeya, On the partial sums of an infinite series, Tohoku Sci. Rep. (1915), 159–163.
- Terry Lyons and Dennis Sullivan, Function theory, random paths and covering spaces, J. Differential Geom. 19 (1984), no. 2, 299–323. MR 755228
- George W. Mackey, Unitary representations of group extensions. I, Acta Math. 99 (1958), 265–311. MR 98328, DOI 10.1007/BF02392428
- G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17, Springer-Verlag, Berlin, 1991. MR 1090825, DOI 10.1007/978-3-642-51445-6
- Nicolas Monod, Gelfand pairs admit an Iwasawa decomposition, Math. Ann. 378 (2020), no. 1-2, 605–611. MR 4150929, DOI 10.1007/s00208-020-02034-0
- Rögnvaldur G. Möller, Ends of graphs. II, Math. Proc. Cambridge Philos. Soc. 111 (1992), no. 3, 455–460. MR 1151324, DOI 10.1017/S0305004100075551
- Amos Nevo, The spectral theory of amenable actions and invariants of discrete groups, Geom. Dedicata 100 (2003), 187–218. MR 2011122, DOI 10.1023/A:1025839828396
- Amos Nevo and Robert J. Zimmer, Rigidity of Furstenberg entropy for semisimple Lie group actions, Ann. Sci. École Norm. Sup. (4) 33 (2000), no. 3, 321–343 (English, with English and French summaries). MR 1775184, DOI 10.1016/S0012-9593(00)00113-0
- Zbigniew Nitecki, Cantorvals and subsum sets of null sequences, Amer. Math. Monthly 122 (2015), no. 9, 862–870. MR 3418208, DOI 10.4169/amer.math.monthly.122.9.862
- Dinakar Ramakrishnan and Robert J. Valenza, Fourier analysis on number fields, Graduate Texts in Mathematics, vol. 186, Springer-Verlag, New York, 1999. MR 1680912, DOI 10.1007/978-1-4757-3085-2
- Joseph Rosenblatt, Ergodic and mixing random walks on locally compact groups, Math. Ann. 257 (1981), no. 1, 31–42. MR 630645, DOI 10.1007/BF01450653
- Günter Schlichting, On the periodicity of group operations, Group Theory (Singapore, 1987), de Gruyter, Berlin, 1989, pp. 507–517.
- Omer Tamuz and Tianyi Zheng, On the spectrum of asymptotic entropies of random walks, Preprint, arXiv:1903.01312.
- Kroum Tzanev, Hecke $C^*$-algebras and amenability, J. Operator Theory 50 (2003), no. 1, 169–178. MR 2015025
- V. S. Varadarajan, Geometry of quantum theory, 2nd ed., Springer-Verlag, New York, 1985, xviii+412 pp.
- Robert J. Zimmer, Amenable ergodic group actions and an application to Poisson boundaries of random walks, J. Functional Analysis 27 (1978), no. 3, 350–372. MR 473096, DOI 10.1016/0022-1236(78)90013-7
- Robert J. Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics, vol. 81, Birkhäuser Verlag, Basel, 1984. MR 776417, DOI 10.1007/978-1-4684-9488-4
Bibliographic Information
- Michael Björklund
- Affiliation: Department of Mathematics, Chalmers, Gothenburg, Sweden
- ORCID: 0000-0001-7607-9526
- Email: micbjo@chalmers.se
- Yair Hartman
- Affiliation: Department of Mathematics, Ben Gurion University of the Negev, Be’er-Sheva, Israel
- MR Author ID: 1001252
- ORCID: 0000-0002-8270-0988
- Email: hartmany@bgu.ac.il
- Hanna Oppelmayer
- Affiliation: Department of Mathematics, Universität Innsbruck, Innsbruck, Austria
- MR Author ID: 1459635
- Email: hanna.oppelmayer@uibk.ac.at
- Received by editor(s): October 4, 2022
- Received by editor(s) in revised form: February 23, 2023
- Published electronically: July 17, 2023
- Additional Notes: The first author was partially supported by VR-grant 11253320, the second author was partially supported by ISF grant 1175/18.
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 7045-7085
- MSC (2020): Primary 37A40; Secondary 05C81, 58J51
- DOI: https://doi.org/10.1090/tran/8970
- MathSciNet review: 4636684