Centrally symmetric analytic plane domains are spectrally determined in this class
HTML articles powered by AMS MathViewer
- by Hamid Hezari and Steve Zelditch;
- Trans. Amer. Math. Soc. 376 (2023), 7521-7553
- DOI: https://doi.org/10.1090/tran/8889
- Published electronically: August 29, 2023
- HTML | PDF | Request permission
Abstract:
We prove that, under some generic non-degeneracy assumptions, real analytic centrally symmetric plane domains are determined by their Dirichlet (resp. Neumann) spectra. We prove that the conditions are open-dense for real analytic strictly convex domains. One step is to use a Maslov index calculation to show that the second derivative of the defining function of a centrally symmetric domain at the endpoints of a bouncing ball orbit is a spectral invariant. This is also true for up-down symmetric domains, removing an assumption from the proof in that case.References
- R. V. Ambartzumian, Parallel x-ray tomography of convex domains as a search problem in two dimensions, Izv. Nats. Akad. Nauk Armenii Mat. 48 (2013), no. 1, 37–52; English transl., J. Contemp. Math. Anal. 48 (2013), no. 1, 23–34. MR 3112328, DOI 10.3103/s1068362313010032
- R. Balian and C. Bloch, Distribution of eigenfrequencies for the wave equation in a finite domain. III. Eigenfrequency density oscillations, Ann. Physics 69 (1972), 76–160. MR 289962, DOI 10.1016/0003-4916(72)90006-1
- Patrick Bernard and Vito Mandorino, Some remarks on Thom’s transversality theorem, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 14 (2015), no. 2, 361–386. MR 3410613
- Misha Bialy and Andrey E. Mironov, The Birkhoff-Poritsky conjecture for centrally-symmetric billiard tables, Ann. of Math. (2) 196 (2022), no. 1, 389–413. MR 4429262, DOI 10.4007/annals.2022.196.1.2
- Wilhelm Blaschke, Kreis und Kugel, Chelsea Publishing Co., New York, 1949 (German). MR 76364
- H. W. Broer and F. M. Tangerman, From a differentiable to a real analytic perturbation theory, applications to the Kupka Smale theorems, Ergodic Theory Dynam. Systems 6 (1986), no. 3, 345–362. MR 863199, DOI 10.1017/S0143385700003540
- Y. Colin de Verdière, Sur les longueurs des trajectoires périodiques d’un billard, South Rhone seminar on geometry, III (Lyon, 1983) Travaux en Cours, Hermann, Paris, 1984, pp. 122–139 (French). MR 753865
- A. Clarke, Generic properties of geodesic flows on analytic hypersurface of Euclidean space, arXiv:1908.04662.
- Stephen C. Creagh, Jonathan M. Robbins, and Robert G. Littlejohn, Geometrical properties of Maslov indices in the semiclassical trace formula for the density of states, Phys. Rev. A (3) 42 (1990), no. 4, 1907–1922. MR 1068473, DOI 10.1103/PhysRevA.42.1907
- Christopher B. Croke and Vladimir A. Sharafutdinov, Spectral rigidity of a compact negatively curved manifold, Topology 37 (1998), no. 6, 1265–1273. MR 1632920, DOI 10.1016/S0040-9383(97)00086-4
- Jacopo de Simoi, Vadim Kaloshin, and Qiaoling Wei, Dynamical spectral rigidity among $\Bbb Z_2$-symmetric strictly convex domains close to a circle, Ann. of Math. (2) 186 (2017), no. 1, 277–314. Appendix B coauthored with H. Hezari. MR 3665005, DOI 10.4007/annals.2017.186.1.7
- Catherine Durso, On the inverse spectral problem for polygonal domains, ProQuest LLC, Ann Arbor, MI, 1988. Thesis (Ph.D.)–Massachusetts Institute of Technology. MR 2941198
- M. Ghomi, Shortest periodic billiard trajectories in convex bodies, Geom. Funct. Anal. 14 (2004), no. 2, 295–302. MR 2060196, DOI 10.1007/s00039-004-0458-7
- M. Golubitsky and V. Guillemin, Stable mappings and their singularities, Graduate Texts in Mathematics, Vol. 14, Springer-Verlag, New York-Heidelberg, 1973. MR 341518, DOI 10.1007/978-1-4615-7904-5
- Carolyn Gordon, David L. Webb, and Scott Wolpert, One cannot hear the shape of a drum, Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 1, 134–138. MR 1136137, DOI 10.1090/S0273-0979-1992-00289-6
- Colin Guillarmou and Thibault Lefeuvre, The marked length spectrum of Anosov manifolds, Ann. of Math. (2) 190 (2019), no. 1, 321–344. MR 3990606, DOI 10.4007/annals.2019.190.1.6
- V. Guillemin and D. Kazhdan, Some inverse spectral results for negatively curved $2$-manifolds, Topology 19 (1980), no. 3, 301–312. MR 579579, DOI 10.1016/0040-9383(80)90015-4
- Victor Guillemin and Richard Melrose, The Poisson summation formula for manifolds with boundary, Adv. in Math. 32 (1979), no. 3, 204–232. MR 539531, DOI 10.1016/0001-8708(79)90042-2
- Hamid Hezari, Zhiqin Lu, and Julie Rowlett, The Neumann isospectral problem for trapezoids, Ann. Henri Poincaré 18 (2017), no. 12, 3759–3792. MR 3723340, DOI 10.1007/s00023-017-0617-7
- Hamid Hezari, Z. Lu, and J. Rowlett, The Dirichlet isospectral problem for trapezoids, J. Math. Phys. 62 (2021), no. 5, Paper No. 051511, 13. MR 4262854, DOI 10.1063/5.0036384
- Hamid Hezari and Steve Zelditch, $C^\infty$ spectral rigidity of the ellipse, Anal. PDE 5 (2012), no. 5, 1105–1132. MR 3022850, DOI 10.2140/apde.2012.5.1105
- Hamid Hezari and Steve Zelditch, One can hear the shape of ellipses of small eccentricity, Ann. of Math. (2) 196 (2022), no. 3, 1083–1134. MR 4502596, DOI 10.4007/annals.2022.196.3.4
- H. Hezari and S. Zelditch, A new duality in billiards, (in preparation).
- Morris W. Hirsch, Differential topology, Graduate Texts in Mathematics, vol. 33, Springer-Verlag, New York, 1994. Corrected reprint of the 1976 original. MR 1336822
- B. Hunt and V. Kaloshin, Prevalence, Chapter 2, Handbook of Dynamical Systems, Vol 3, 2010, pp. 43–87.
- Sylvie Oliffson Kamphorst and Sônia Pinto-de-Carvalho, The first Birkhoff coefficient and the stability of 2-periodic orbits on billiards, Experiment. Math. 14 (2005), no. 3, 299–306. MR 2172708, DOI 10.1080/10586458.2005.10128923
- D. Kershaw, The explicit inverses of two commonly occurring matrices, Math. Comp. 23 (1969), 189–191. MR 238478, DOI 10.1090/S0025-5718-1969-0238478-X
- Steven G. Krantz and Harold R. Parks, A primer of real analytic functions, 2nd ed., Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Boston, Inc., Boston, MA, 2002. MR 1916029, DOI 10.1007/978-0-8176-8134-0
- A. Kriegl and P. W. Michor, The convenient setting for real analytic mappings, Acta Math. 165 (1990), no. 1-2, 105–159. MR 1064579, DOI 10.1007/BF02391903
- Vladimir F. Lazutkin, KAM theory and semiclassical approximations to eigenfunctions, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 24, Springer-Verlag, Berlin, 1993. With an addendum by A. I. Shnirel′man. MR 1239173, DOI 10.1007/978-3-642-76247-5
- Shahla Marvizi and Richard Melrose, Spectral invariants of convex planar regions, J. Differential Geom. 17 (1982), no. 3, 475–502. MR 679068
- Jean-Pierre Otal, Le spectre marqué des longueurs des surfaces à courbure négative, Ann. of Math. (2) 131 (1990), no. 1, 151–162 (French). MR 1038361, DOI 10.2307/1971511
- Vesselin Petkov and Luchezar Stojanov, Periods of multiple reflecting geodesics and inverse spectral results, Amer. J. Math. 109 (1987), no. 4, 619–668. MR 900034, DOI 10.2307/2374608
- Vesselin M. Petkov and Luchezar N. Stoyanov, Geometry of the generalized geodesic flow and inverse spectral problems, 2nd ed., John Wiley & Sons, Ltd., Chichester, 2017. MR 3617212, DOI 10.1002/9781119107682
- J. Souček and V. Souček, Morse-Sard theorem for real-analytic functions, Comment. Math. Univ. Carolinae 13 (1972), 45–51. MR 308345
- A. Vig, The wave trace and the Birkhoff billiards, arXiv:1910.06441, 2019.
- Kohtaro Watanabe, Plane domains which are spectrally determined, Ann. Global Anal. Geom. 18 (2000), no. 5, 447–475. MR 1790709, DOI 10.1023/A:1006641021540
- Kohtaro Watanabe, Plane domains which are spectrally determined. II, J. Inequal. Appl. 7 (2002), no. 1, 25–47. MR 1923566, DOI 10.1155/S1025583402000036
- Amie Wilkinson, Lectures on marked length spectrum rigidity, Geometric group theory, IAS/Park City Math. Ser., vol. 21, Amer. Math. Soc., Providence, RI, 2014, pp. 283–324. MR 3329731, DOI 10.1090/pcms/021/09
- Jörg Winkelmann, Realizing connected Lie groups as automorphism groups of complex manifolds, Comment. Math. Helv. 79 (2004), no. 2, 285–299. MR 2059433, DOI 10.1007/s00014-003-0794-5
- Steve Zelditch, Inverse spectral problem for analytic domains. II. $\Bbb Z_2$-symmetric domains, Ann. of Math. (2) 170 (2009), no. 1, 205–269. MR 2521115, DOI 10.4007/annals.2009.170.205
Bibliographic Information
- Hamid Hezari
- Affiliation: Department of Mathematics, UC Irvine, Irvine, California 92617
- MR Author ID: 841353
- Email: hezari@math.uci.edu
- Steve Zelditch
- Affiliation: Department of Mathematics, Northwestern University, Evanston, Illinois 60208
- Email: zelditch@math.northwestern.edu
- Received by editor(s): April 19, 2021
- Received by editor(s) in revised form: September 3, 2022
- Published electronically: August 29, 2023
- Additional Notes: The research of the first author was supported by the Simons Collaborations Grants for Mathematicians 638398. The research of the second author was partially supported by NSF grant DMS-1810747.
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 7521-7553
- MSC (2020): Primary 35Pxx
- DOI: https://doi.org/10.1090/tran/8889
- MathSciNet review: 4657215