Precise late-time asymptotics of scalar field in the interior of a subextreme Kerr black hole and its application in Strong Cosmic Censorship conjecture
HTML articles powered by AMS MathViewer
- by Siyuan Ma and Lin Zhang;
- Trans. Amer. Math. Soc. 376 (2023), 7815-7856
- DOI: https://doi.org/10.1090/tran/8957
- Published electronically: September 1, 2023
- HTML | PDF | Request permission
Abstract:
In this work, we compute the precise late-time asymptotics for the scalar field in the interior of a non-static subextreme Kerr black hole, based on recent progress on deriving its precise asymptotics in the Kerr exterior region. This provides a new proof of the generic $H^1_{\text {loc}}$-inextendibility of the Kerr Cauchy horizon against scalar perturbations that was first shown by Luk–Sbierski [J. Funct. Anal. 271 (2016), pp. 1948–1995]. The analogous results in Reissner–Nordström spacetimes are also discussed.References
- Lars Andersson, Thomas Bäckdahl, Pieter Blue, and Siyuan Ma, Stability for linearized gravity on the Kerr spacetime, Preprint, arXiv:1903.03859 (2019).
- Lars Andersson, Thomas Bäckdahl, Pieter Blue, and Siyuan Ma, Nonlinear radiation gauge for near Kerr spacetimes, Comm. Math. Phys. 396 (2022), no. 1, 45–90. MR 4499012, DOI 10.1007/s00220-022-04461-3
- Lars Andersson, Dietrich Häfner, and Bernard F. Whiting, Mode analysis for the linearized Einstein equations on the Kerr metric: the large $\mathfrak {a}$ case, Preprint, arXiv:2207.12952 (2022).
- Yannis Angelopoulos, Stefanos Aretakis, and Dejan Gajic, Late-time tails and mode coupling of linear waves on Kerr spacetimes, Adv. Math. 417 (2023), Paper No. 108939, 153. MR 4554671, DOI 10.1016/j.aim.2023.108939
- Y. Angelopoulos, S. Aretakis, and D. Gajic, Late-time asymptotics for the wave equation on spherically symmetric, stationary spacetimes, Adv. Math. 323 (2018), 529–621. MR 3725885, DOI 10.1016/j.aim.2017.10.027
- Leor Barack and Amos Ori, Late-time decay of gravitational and electromagnetic perturbations along the event horizon, Phys. Rev. D (3) 60 (1999), no. 12, 124005, 16. MR 1732825, DOI 10.1103/PhysRevD.60.124005
- Vitor Cardoso, João L. Costa, Kyriakos Destounis, Peter Hintz, and Aron Jansen, Quasinormal Modes and Strong Cosmic Censorship, \prl120 (2018), no. 3, 031103.
- S. Chandrasekhar and J. B. Hartle, On crossing the Cauchy horizon of a Reissner-Nordström black-hole, Proc. Roy. Soc. London Ser. A 384 (1982), no. 1787, 301–315. MR 684313, DOI 10.1098/rspa.1982.0160
- Demetrios Christodoulou, The global initial value problem in general relativity, The Ninth Marcel Grossmann Meeting: On Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories (In 3 Volumes), World Scientific, 2002, pp. 44–54.
- Mihalis Dafermos, Stability and instability of the Cauchy horizon for the spherically symmetric Einstein-Maxwell-scalar field equations, Ann. of Math. (2) 158 (2003), no. 3, 875–928. MR 2031855, DOI 10.4007/annals.2003.158.875
- Mihalis Dafermos, Gustav Holzegel, and Igor Rodnianski, The linear stability of the Schwarzschild solution to gravitational perturbations, Acta Math. 222 (2019), no. 1, 1–214. MR 3941803, DOI 10.4310/ACTA.2019.v222.n1.a1
- Mihalis Dafermos, Gustav Holzegel, Igor Rodnianski, and Martin Taylor, The non-linear stability of the Schwarzschild family of black holes, Preprint, arXiv:2104.08222 (2021).
- Mihalis Dafermos and Jonathan Luk, The interior of dynamical vacuum black holes I: The $C^0$-stability of the Kerr Cauchy horizon, E-prints (2017), arXiv:1710.01722.
- Mihalis Dafermos and Igor Rodnianski, A proof of Price’s law for the collapse of a self-gravitating scalar field, Invent. Math. 162 (2005), no. 2, 381–457. MR 2199010, DOI 10.1007/s00222-005-0450-3
- Mihalis Dafermos and Yakov Shlapentokh-Rothman, Time-translation invariance of scattering maps and blue-shift instabilities on Kerr black hole spacetimes, Comm. Math. Phys. 350 (2017), no. 3, 985–1016. MR 3607468, DOI 10.1007/s00220-016-2771-z
- Roland Donninger, Wilhelm Schlag, and Avy Soffer, A proof of Price’s law on Schwarzschild black hole manifolds for all angular momenta, Adv. Math. 226 (2011), no. 1, 484–540. MR 2735767, DOI 10.1016/j.aim.2010.06.026
- Allen Juntao Fang, Nonlinear stability of the slowly-rotating Kerr-de Sitter family, Preprint, arXiv:2112.07183 (2021).
- Allen Juntao Fang, Linear stability of the slowly-rotating Kerr-de Sitter family, Preprint, arXiv:2207.07902 (2022).
- Anne T. Franzen, Boundedness of massless scalar waves on Reissner-Nordström interior backgrounds, Comm. Math. Phys. 343 (2016), no. 2, 601–650. MR 3477348, DOI 10.1007/s00220-015-2440-7
- Anne T. Franzen, Boundedness of massless scalar waves on Kerr interior backgrounds, Ann. Henri Poincaré 21 (2020), no. 4, 1045–1111. MR 4078277, DOI 10.1007/s00023-020-00900-w
- Elena Giorgi, The linear stability of Reissner-Nordström spacetime: the full subextremal range $|Q|<M$, Comm. Math. Phys. 380 (2020), no. 3, 1313–1360. MR 4179729, DOI 10.1007/s00220-020-03893-z
- Elena Giorgi, Sergiu Klainerman, and Jérémie Szeftel, A general formalism for the stability of Kerr, Preprint, arXiv:2002.02740 (2020).
- Elena Giorgi, Sergiu Klainerman, and érémie Szeftel, Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes, Preprint, arXiv:2205.14808 (2022).
- Reinaldo J. Gleiser, Richard H. Price, and Jorge Pullin, Late-time tails in the Kerr spacetime, Classical Quantum Gravity 25 (2008), no. 7, 072001, 6. MR 2404409, DOI 10.1088/0264-9381/25/7/072001
- Dietrich Häfner, Peter Hintz, and András Vasy, Linear stability of slowly rotating Kerr black holes, Invent. Math. 223 (2021), no. 3, 1227–1406. MR 4213773, DOI 10.1007/s00222-020-01002-4
- Peter Hintz, Boundedness and decay of scalar waves at the Cauchy horizon of the Kerr spacetime, Comment. Math. Helv. 92 (2017), no. 4, 801–837. MR 3718488, DOI 10.4171/CMH/425
- Peter Hintz, A sharp version of Price’s law for wave decay on asymptotically flat spacetimes, Comm. Math. Phys. 389 (2022), no. 1, 491–542. MR 4365146, DOI 10.1007/s00220-021-04276-8
- Peter Hintz and András Vasy, The global non-linear stability of the Kerr–de Sitter family of black holes, Acta Math. 220 (2018), no. 1, 1–206. MR 3816427, DOI 10.4310/ACTA.2018.v220.n1.a1
- William A. Hiscock, Evolution of the interior of a charged black hole, Phys. Lett. A 83 (1981), no. 3, 110–112. MR 617171, DOI 10.1016/0375-9601(81)90508-9
- Sergiu Klainerman and Jérémie Szeftel, Construction of GCM spheres in perturbations of Kerr, Ann. PDE 8 (2022), no. 2, Paper No. 17, 153. MR 4462882, DOI 10.1007/s40818-022-00131-8
- Sergiu Klainerman and Jérémie Szeftel, Global nonlinear stability of Schwarzschild spacetime under polarized perturbations, Annals of Mathematics Studies, vol. 210, Princeton University Press, Princeton, NJ, 2020. MR 4298717, DOI 10.2307/j.ctv15r57cw
- Sergiu Klainerman and Jérémie Szeftel, Kerr stability for small angular momentum, Preprint, arXiv:2104.11857 (2021).
- Shi-Zhuo Looi, Improved decay for quasilinear wave equations close to asymptotically flat spacetimes including black hole spacetimes, Preprint arXiv:2208.05439 (2022).
- Jonathan Luk, Weak null singularities in general relativity, J. Amer. Math. Soc. 31 (2018), no. 1, 1–63. MR 3718450, DOI 10.1090/jams/888
- Jonathan Luk and Sung-Jin Oh, Proof of linear instability of the Reissner-Nordström Cauchy horizon under scalar perturbations, Duke Math. J. 166 (2017), no. 3, 437–493. MR 3606723, DOI 10.1215/00127094-3715189
- Jonathan Luk and Sung-Jin Oh, Strong cosmic censorship in spherical symmetry for two-ended asymptotically flat initial data I. The interior of the black hole region, Ann. of Math. (2) 190 (2019), no. 1, 1–111. MR 3990601, DOI 10.4007/annals.2019.190.1.1
- Jonathan Luk and Sung-Jin Oh, Strong cosmic censorship in spherical symmetry for two-ended asymptotically flat initial data II: the exterior of the black hole region, Ann. PDE 5 (2019), no. 1, Paper No. 6, 194. MR 3969149, DOI 10.1007/s40818-019-0062-7
- Jonathan Luk, Sung-Jin Oh, and Yakov Shlapentokh-Rothman, A scattering theory approach to Cauchy horizon instability and applications to mass inflation, Ann. Henri Poincaré 24 (2023), no. 2, 363–411. MR 4548525, DOI 10.1007/s00023-022-01216-7
- Jonathan Luk and Jan Sbierski, Instability results for the wave equation in the interior of Kerr black holes, J. Funct. Anal. 271 (2016), no. 7, 1948–1995. MR 3535323, DOI 10.1016/j.jfa.2016.06.013
- Siyuan Ma, Almost Price’s law in Schwarzschild and decay estimates in Kerr for Maxwell field, J. Differential Equations 339 (2022), 1–89. MR 4477045, DOI 10.1016/j.jde.2022.08.021
- Siyuan Ma, Uniform energy bound and Morawetz estimate for extreme components of spin fields in the exterior of a slowly rotating Kerr black hole I: Maxwell field, Ann. Henri Poincaré 21 (2020), no. 3, 815–863. MR 4062461, DOI 10.1007/s00023-020-00884-7
- Siyuan Ma, Uniform energy bound and Morawetz estimate for extreme components of spin fields in the exterior of a slowly rotating Kerr black hole II: Linearized gravity, Comm. Math. Phys. 377 (2020), no. 3, 2489–2551. MR 4121625, DOI 10.1007/s00220-020-03777-2
- Siyuan Ma and Lin Zhang, Price’s law for spin fields on a Schwarzschild background, Ann. PDE 8 (2022), no. 2, Paper No. 25, 100. MR 4510626, DOI 10.1007/s40818-022-00139-0
- Siyuan Ma and Lin Zhang, Sharp decay for Teukolsky equation in Kerr spacetimes, Comm. Math. Phys. 401 (2023), no. 1, 333–434. MR 4604899, DOI 10.1007/s00220-023-04640-w
- Siyuan Ma and Lin Zhang, Sharp decay estimates for massless Dirac fields on a Schwarzschild background, J. Funct. Anal. 282 (2022), no. 6, Paper No. 109375, 112. MR 4362858, DOI 10.1016/j.jfa.2021.109375
- J. M. McNamara, Instability of black hole inner horizons, Proc. Roy. Soc. London Ser. A 358 (1978), no. 1695, 499–517. MR 489678, DOI 10.1098/rspa.1978.0024
- Jason Metcalfe, Daniel Tataru, and Mihai Tohaneanu, Price’s law on nonstationary space-times, Adv. Math. 230 (2012), no. 3, 995–1028. MR 2921169, DOI 10.1016/j.aim.2012.03.010
- Barrett O’Neill, The geometry of Kerr black holes, A K Peters, Ltd., Wellesley, MA, 1995. MR 1328643
- Amos Ori, Inner structure of a charged black hole: an exact mass-inflation solution, Phys. Rev. Lett. 67 (1991), no. 7, 789–792. MR 1118553, DOI 10.1103/PhysRevLett.67.789
- Amos Ori, Evolution of scalar-field perturbations inside a Kerr black hole, Phys. Rev. D (3) 58 (1998), no. 8, 084016, 11. MR 1682094, DOI 10.1103/PhysRevD.58.084016
- Roger Penrose, Roger. 1974. Gravitational collapse, Symposium-International Astronomical Union, vol. 64, Cambridge University Press, 1974, pp. 82–91.
- E. Poisson and W. Israel, Inner-horizon instability and mass inflation in black holes, Phys. Rev. Lett. 63 (1989), no. 16, 1663–1666. MR 1018317, DOI 10.1103/PhysRevLett.63.1663
- Richard H. Price, Nonspherical perturbations of relativistic gravitational collapse. I. Scalar and gravitational perturbations, Phys. Rev. D (3) 5 (1972), 2419–2438. MR 376103, DOI 10.1103/PhysRevD.5.2419
- Richard H. Price, Nonspherical perturbations of relativistic gravitational collapse. II. Integer-spin, zero-rest-mass fields, Phys. Rev. D (3) 5 (1972), 2439–2454. MR 376104, DOI 10.1103/PhysRevD.5.2439
- Richard H. Price and Lior M. Burko, Late time tails from momentarily stationary, compact initial data in Schwarzschild spacetimes, Phys. Rev. D (3) 70 (2004), no. 8, 084039, 6. MR 2117134, DOI 10.1103/PhysRevD.70.084039
- Jan Sbierski, Characterisation of the energy of Gaussian beams on Lorentzian manifolds: with applications to black hole spacetimes, Anal. PDE 8 (2015), no. 6, 1379–1420. MR 3397001, DOI 10.2140/apde.2015.8.1379
- Jan Sbierski, On holonomy singularities in general relativity and the $C_\textrm {loc}^{0,1}$-inextendibility of space-times, Duke Math. J. 171 (2022), no. 14, 2881–2942. MR 4491709, DOI 10.1215/00127094-2022-0040
- Jan Sbierski, Instability of the Kerr Cauchy horizon under linearised gravitational perturbations, Ann. PDE 9 (2023), no. 1, Paper No. 7, 133. MR 4565915, DOI 10.1007/s40818-023-00146-9
- Dawei Shen, Construction of GCM hypersurfaces in perturbations of Kerr, Preprint, arXiv:2205.12336 (2022).
- Daniel Tataru, Local decay of waves on asymptotically flat stationary space-times, Amer. J. Math. 135 (2013), no. 2, 361–401. MR 3038715, DOI 10.1353/ajm.2013.0012
- S. A. Teukolsky, Rotating black holes: Separable wave equations for gravitational and electromagnetic perturbations, Phys. Rev. Lett. 29 (1972), no. 16, 1114–1118.
- Maxime Van de Moortel, Stability and instability of the sub-extremal Reissner-Nordström black hole interior for the Einstein-Maxwell-Klein-Gordon equations in spherical symmetry, Comm. Math. Phys. 360 (2018), no. 1, 103–168. MR 3795189, DOI 10.1007/s00220-017-3079-3
- Maxime Van de Moortel, Mass inflation and the $C^2$-inextendibility of spherically symmetric charged scalar field dynamical black holes, Comm. Math. Phys. 382 (2021), no. 2, 1263–1341. MR 4227173, DOI 10.1007/s00220-020-03923-w
Bibliographic Information
- Siyuan Ma
- Affiliation: Laboratoire Jacques-Louis Lions, Sorbonne Université, 4 place Jussieu, 75005 Paris, France; and Max Planck Institute for Gravitational Physics, Am Mühlenberg 1, 14476 Potsdam, Germany; and Academy of Mathematics and Systems Science, The Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- Email: siyuan.ma@amss.ac.cn
- Lin Zhang
- Affiliation: College of Mathematics and Statistics, Chongqing University, Chongqing 401331, People’s Republic of China
- Email: lzhang_math@cqu.edu.cn
- Received by editor(s): August 18, 2022
- Received by editor(s) in revised form: March 22, 2023
- Published electronically: September 1, 2023
- Additional Notes: The first author was supported by the ERC grant ERC-2016 CoG 725589 EPGR and the Alexander von Humboldt postdoc fellowship. The second author was supported by the National Nature Science Foundation of China (Grant No. 12201083).
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 7815-7856
- MSC (2020): Primary 83C75, 35Q75, 58K55, 83C57, 58J45; Secondary 58J37
- DOI: https://doi.org/10.1090/tran/8957
- MathSciNet review: 4657222