Families of Galois representations and $(\varphi , \tau )$-modules
HTML articles powered by AMS MathViewer
- by Aditya Karnataki and Léo Poyeton;
- Trans. Amer. Math. Soc. 376 (2023), 7911-7946
- DOI: https://doi.org/10.1090/tran/8985
- Published electronically: August 3, 2023
- HTML | PDF | Request permission
Abstract:
Let $p$ be a prime, and let $K$ be a finite extension of $\mathbf {Q}_p$, with absolute Galois group $\mathcal {G}_K$. Let $\pi$ be a uniformizer of $K$ and let $K_\infty$ be the Kummer extension obtained by adjoining to $K$ a system of compatible $p^n$-th roots of $\pi$, for all $n$, and let $L$ be the Galois closure of $K_\infty$. Using these extensions, Caruso has constructed é tale $(\phi ,\tau )$-modules, which classify $p$-adic Galois representations of $K$. In this paper, we use locally analytic vectors and theories of families of $\phi$-modules over Robba rings to prove the overconvergence of $(\phi ,\tau )$-modules in families. As examples, we also compute some explicit families of $(\phi ,\tau )$-modules in some simple cases.References
- Laurent Berger and Pierre Colmez, Familles de représentations de de Rham et monodromie $p$-adique, Astérisque 319 (2008), 303–337 (French, with English and French summaries). Représentations $p$-adiques de groupes $p$-adiques. I. Représentations galoisiennes et $(\phi ,\Gamma )$-modules. MR 2493221
- Laurent Berger and Pierre Colmez, Théorie de Sen et vecteurs localement analytiques, Ann. Sci. Éc. Norm. Supér. (4) 49 (2016), no. 4, 947–970 (French, with English and French summaries). MR 3552018, DOI 10.24033/asens.2300
- Laurent Berger, Multivariable $(\varphi ,\Gamma )$-modules and locally analytic vectors, Duke Math. J. 165 (2016), no. 18, 3567–3595. MR 3577371, DOI 10.1215/00127094-3674441
- S. Bosch, U. Güntzer, and R. Remmert, Non-Archimedean analysis, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 261, Springer-Verlag, Berlin, 1984. A systematic approach to rigid analytic geometry. MR 746961, DOI 10.1007/978-3-642-52229-1
- Christophe Breuil, Schémas en groupes et corps de normes, 1998.
- Laurent Berger, Peter Schneider, and Bingyong Xie, Rigid character groups, Lubin-Tate theory, and ($\varphi$, $\Gamma$)-modules.
- Xavier Caruso, Représentations galoisiennes $p$-adiques et $(\varphi ,\tau )$-modules, Duke Math. J. 162 (2013), no. 13, 2525–2607 (French, with English and French summaries). MR 3127808, DOI 10.1215/00127094-2371976
- F. Cherbonnier and P. Colmez, Représentations $p$-adiques surconvergentes, Invent. Math. 133 (1998), no. 3, 581–611 (French). MR 1645070, DOI 10.1007/s002220050255
- Pierre Colmez, Les conjectures de monodromie $p$-adiques, Astérisque 290 (2003), Exp. No. 897, vii, 53–101 (French, with French summary). Séminaire Bourbaki. Vol. 2001/2002. MR 2074051
- Pierre Colmez, Espaces Vectoriels de dimension finie et représentations de de Rham, Astérisque 319 (2008), 117–186.
- Pierre Colmez, Représentations de $GL_2$($\mathbf {Q}_p$) et ($\phi$, $\Gamma$)-modules, Astérisque 330 (2010), no. 281, 509.
- Hansheng Diao, Ruochuan Liu, Kai-Wen Lan, and Xinwen Zhu, Logarithmic adic spaces: some foundational results, arXiv:1912.09836v1, 2019.
- Matthew Emerton, Locally analytic vectors in representations of locally $p$-adic analytic groups, Mem. Amer. Math. Soc. 248 (2017), no. 1175, iv+158. MR 3685952, DOI 10.1090/memo/1175
- Jean-Marc Fontaine, Représentations $p$-adiques des corps locaux. I, The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 249–309 (French). MR 1106901
- Jean-Marc Fontaine, Le corps des périodes $p$-adiques, Astérisque (1994), no. 223, 59–102.
- Lionel Fourquaux and Bingyong Xie, Triangulable ${\scr O}_F$-analytic $(\varphi _q,\Gamma )$-modules of rank 2, Algebra Number Theory 7 (2013), no. 10, 2545–2592. MR 3194651, DOI 10.2140/ant.2013.7.2545
- Hui Gao and Tong Liu, Loose crystalline lifts and overconvergence of étale $(\varphi ,\tau )$-modules, Amer. J. Math. 142 (2020), no. 6, 1733–1770. MR 4176543, DOI 10.1353/ajm.2020.0043
- Hui Gao and Léo Poyeton, Locally analytic vectors and overconvergent $(\varphi , \tau )$-modules, J. Inst. Math. Jussieu 20 (2021), no. 1, 137–185. MR 4205780, DOI 10.1017/S1474748019000148
- Eugen Hellmann, Families of $p$-adic Galois representations and $(\varphi ,\Gamma )$-modules, Comment. Math. Helv. 91 (2016), no. 4, 721–749. MR 3566522, DOI 10.4171/CMH/401
- R. Huber, A generalization of formal schemes and rigid analytic varieties, Math. Z. 217 (1994), no. 4, 513–551. MR 1306024, DOI 10.1007/BF02571959
- Mark Kisin, Crystalline representations and $F$-crystals, Algebraic geometry and number theory, Progr. Math., vol. 253, Birkhäuser Boston, Boston, MA, 2006, pp. 459–496. MR 2263197, DOI 10.1007/978-0-8176-4532-8_{7}
- Mark Kisin, Potentially semi-stable deformation rings, J. Amer. Math. Soc. 21 (2008), no. 2, 513–546. MR 2373358, DOI 10.1090/S0894-0347-07-00576-0
- Mark Kisin, Integral models for Shimura varieties of abelian type, J. Amer. Math. Soc. 23 (2010), no. 4, 967–1012. MR 2669706, DOI 10.1090/S0894-0347-10-00667-3
- Kiran Kedlaya and Ruochuan Liu, On families of $\phi$, $\Gamma$-modules, Algebra Number Theory 4 (2010), no. 7, 943–967. MR 2776879, DOI 10.2140/ant.2010.4.943
- Kiran S. Kedlaya and Ruochuan Liu, Relative $p$-adic hodge theory: foundations., Astérisque 371 (2015), 1–239.
- Aditya Karnataki and Ruochuan Liu, Families of Galois representations, Preprint, 2021.
- Mark Kisin and Wei Ren, Galois representations and Lubin-Tate groups, Doc. Math. 14 (2009), 441–461. MR 2565906, DOI 10.4171/dm/278
- Tong Liu, On lattices in semi-stable representations: a proof of a conjecture of Breuil, Compos. Math. 144 (2008), no. 1, 61–88. MR 2388556, DOI 10.1112/S0010437X0700317X
- Tong Liu, A note on lattices in semi-stable representations, Math. Ann. 346 (2010), no. 1, 117–138. MR 2558890, DOI 10.1007/s00208-009-0392-y
- Shigeki Matsuda, Local indices of $p$-adic differential operators corresponding to Artin-Schreier-Witt coverings, Duke Math. J. 77 (1995), no. 3, 607–625. MR 1324636, DOI 10.1215/S0012-7094-95-07719-9
- Léo Poyeton, $(\varphi ,\tau )$-modules différentiels et représentations potentiellement semi-stables, J. Théor. Nombres Bordeaux 33 (2021), no. 1, 139–195 (French, with English and French summaries). MR 4312704, DOI 10.5802/jtnb.1156
- Shankar Sen, Continuous cohomology and $p$-adic Galois representations, Invent. Math. 62 (1980/81), no. 1, 89–116. MR 595584, DOI 10.1007/BF01391665
- P. Schneider and J. Teitelbaum, Banach space representations and Iwasawa theory, Israel J. Math. 127 (2002), 359–380. MR 1900706, DOI 10.1007/BF02784538
- Jean-Pierre Wintenberger, Le corps des normes de certaines extensions infinies de corps locaux; applications, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 1, 59–89 (French). MR 719763, DOI 10.24033/asens.1440
Bibliographic Information
- Aditya Karnataki
- Affiliation: Chennai Mathematical Institute, Chennai, India
- MR Author ID: 1189463
- ORCID: 0000-0002-0849-5672
- Email: adityack@cmi.ac.in
- Léo Poyeton
- Affiliation: Dipartimento di Matematica “Tullio Levi-Civita”, Padova, Italy
- ORCID: 0009-0009-9777-6182
- Email: leo.poyeton@math.unipd.it
- Received by editor(s): October 5, 2022
- Received by editor(s) in revised form: April 18, 2023
- Published electronically: August 3, 2023
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 7911-7946
- MSC (2020): Primary 11F80; Secondary 11S20
- DOI: https://doi.org/10.1090/tran/8985
- MathSciNet review: 4657224