Automatic continuity, unique Polish topologies, and Zariski topologies on monoids and clones
HTML articles powered by AMS MathViewer
- by L. Elliott, J. Jonušas, Z. Mesyan, J. D. Mitchell, M. Morayne and Y. Péresse;
- Trans. Amer. Math. Soc. 376 (2023), 8023-8093
- DOI: https://doi.org/10.1090/tran/8987
- Published electronically: August 22, 2023
- PDF | Request permission
Abstract:
In this paper we explore the extent to which the algebraic structure of a monoid $M$ determines the topologies on $M$ that are compatible with its multiplication. Specifically we study the notions of automatic continuity; minimal Hausdorff or $T_1$ topologies; Polish semigroup topologies; and we formulate a notion of the Zariski topology for monoids and inverse monoids.
If $M$ is a topological monoid such that every homomorphism from $M$ to a second countable topological monoid $N$ is continuous, then we say that $M$ has automatic continuity. We show that many well-known, and extensively studied, monoids have automatic continuity with respect to a natural semigroup topology, namely: the full transformation monoid $\mathbb {N} ^\mathbb {N}$; the full binary relation monoid $B_{\mathbb {N}}$; the partial transformation monoid $P_{\mathbb {N}}$; the symmetric inverse monoid $I_{\mathbb {N}}$; the monoid $\operatorname {Inj}(\mathbb {N})$ consisting of the injective transformations of $\mathbb {N}$; and the monoid $C(2^{\mathbb {N}})$ of continuous functions on the Cantor set $2^{\mathbb {N}}$.
The monoid $\mathbb {N} ^\mathbb {N}$ can be equipped with the product topology, where the natural numbers $\mathbb {N}$ have the discrete topology; this topology is referred to as the pointwise topology. We show that the pointwise topology on $\mathbb {N} ^\mathbb {N}$, and its analogue on $P_{\mathbb {N}}$, is the unique Polish semigroup topology on these monoids. The compact-open topology is the unique Polish semigroup topology on $C(2 ^\mathbb {N})$, and on the monoid $C([0, 1] ^\mathbb {N})$ of continuous functions on the Hilbert cube $[0, 1] ^\mathbb {N}$. The symmetric inverse monoid $I_{\mathbb {N}}$ has at least 3 Polish semigroup topologies, but a unique Polish inverse semigroup topology. The full binary relation monoid $B_{\mathbb {N}}$ has no Polish semigroup topologies, nor do the partition monoids. At the other extreme, $\operatorname {Inj}(\mathbb {N})$ and the monoid $\operatorname {Surj}(\mathbb {N})$ of all surjective transformations of $\mathbb {N}$ each have infinitely many distinct Polish semigroup topologies.
We prove that the Zariski topologies on $\mathbb {N} ^\mathbb {N}$, $P_{\mathbb {N}}$, and $\operatorname {Inj}(\mathbb {N})$ coincide with the pointwise topology; and we characterise the Zariski topology on $B_{\mathbb {N}}$.
Along the way we provide many additional results relating to the Markov topology, the small index property for monoids, and topological embeddings of semigroups in $\mathbb {N}^{\mathbb {N}}$ and inverse monoids in $I_{\mathbb {N}}$.
Finally, the techniques developed in this paper to prove the results about monoids are applied to function clones. In particular, we show that: the full function clone has a unique Polish topology; the Horn clone, the polymorphism clones of the Cantor set and the countably infinite atomless Boolean algebra all have automatic continuity with respect to second countable function clone topologies.
References
- S. I. Adian, The Burnside problem and identities in groups, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 95, Springer-Verlag, Berlin-New York, 1979. Translated from the Russian by John Lennox and James Wiegold. MR 537580, DOI 10.1007/978-3-642-66932-3
- Charalambos D. Aliprantis and Kim C. Border, Infinite dimensional analysis, 3rd ed., Springer, Berlin, 2006. A hitchhiker’s guide. MR 2378491
- Silvia Barbina and Dugald MacPherson, Reconstruction of homogeneous relational structures, J. Symbolic Logic 72 (2007), no. 3, 792–802. MR 2354901, DOI 10.2178/jsl/1191333842
- S. Bardyla, L. Elliott, J. D. Mitchell, and Y. Péresse, Topological embeddings into transformation monoids, 2023.
- Mike Behrisch, Clones with nullary operations, Proceedings of the Workshop on Algebra, Coalgebra and Topology (WACT 2013), Electron. Notes Theor. Comput. Sci., vol. 303, Elsevier Sci. B. V., Amsterdam, 2014, pp. 3–35. MR 3213201, DOI 10.1016/j.entcs.2014.02.002
- Mike Behrisch, John K. Truss, and Edith Vargas-García, Reconstructing the topology on monoids and polymorphism clones of the rationals, Studia Logica 105 (2017), no. 1, 65–91. MR 3607630, DOI 10.1007/s11225-016-9682-z
- Manuel Bodirsky, Hubie Chen, and Michael Pinsker, The reducts of equality up to primitive positive interdefinability, J. Symbolic Logic 75 (2010), no. 4, 1249–1292. MR 2767967, DOI 10.2178/jsl/1286198146
- Manuel Bodirsky, David Evans, Michael Kompatscher, and Michael Pinsker, A counterexample to the reconstruction of $\omega$-categorical structures from their endomorphism monoid, Israel J. Math. 224 (2018), no. 1, 57–82. MR 3799749, DOI 10.1007/s11856-018-1645-9
- Manuel Bodirsky, Michael Pinsker, and András Pongrácz, Reconstructing the topology of clones, Trans. Amer. Math. Soc. 369 (2017), no. 5, 3707–3740. MR 3605985, DOI 10.1090/tran/6937
- Manuel Bodirsky, Michael Pinsker, and András Pongrácz, Projective clone homomorphisms, J. Symb. Log. 86 (2021), no. 1, 148–161. MR 4282703, DOI 10.1017/jsl.2019.23
- Manuel Bodirsky and Friedrich Martin Schneider, A topological characterisation of endomorphism monoids of countable structures, Algebra Universalis 77 (2017), no. 3, 251–269. MR 3652465, DOI 10.1007/s00012-017-0427-2
- Roger M. Bryant, The verbal topology of a group, J. Algebra 48 (1977), no. 2, 340–346. MR 453878, DOI 10.1016/0021-8693(77)90312-X
- Roger M. Bryant and David M. Evans, The small index property for free groups and relatively free groups, J. London Math. Soc. (2) 55 (1997), no. 2, 363–369. MR 1438640, DOI 10.1112/S0024610796004711
- Xiao Chang and Paul Gartside, Minimum topological group topologies, J. Pure Appl. Algebra 221 (2017), no. 8, 2010–2024. MR 3623181, DOI 10.1016/j.jpaa.2016.10.013
- Michael P. Cohen and Robert R. Kallman, $\textrm {PL}_+(I)$ is not a Polish group, Ergodic Theory Dynam. Systems 36 (2016), no. 7, 2121–2137. MR 3568974, DOI 10.1017/etds.2015.13
- Dikran Dikranjan and Dmitri Shakhmatov, The Markov-Zariski topology of an abelian group, J. Algebra 324 (2010), no. 6, 1125–1158. MR 2671798, DOI 10.1016/j.jalgebra.2010.04.025
- John D. Dixon, Peter M. Neumann, and Simon Thomas, Subgroups of small index in infinite symmetric groups, Bull. London Math. Soc. 18 (1986), no. 6, 580–586. MR 859950, DOI 10.1112/blms/18.6.580
- R. M. Dudley, Continuity of homomorphisms, Duke Math. J. 28 (1961), 587–594. MR 136676, DOI 10.1215/S0012-7094-61-02859-9
- J. East, J. D. Mitchell, and Y. Péresse, Maximal subsemigroups of the semigroup of all mappings on an infinite set, Trans. Amer. Math. Soc. 367 (2015), no. 3, 1911–1944. MR 3286503, DOI 10.1090/S0002-9947-2014-06110-2
- James East, Infinite partition monoids, Internat. J. Algebra Comput. 24 (2014), no. 4, 429–460. MR 3227821, DOI 10.1142/S0218196714500209
- James East, Infinite dual symmetric inverse monoids, Period. Math. Hungar. 75 (2017), no. 2, 273–285. MR 3718521, DOI 10.1007/s10998-017-0194-z
- David M. Evans, Subgroups of small index in infinite general linear groups, Bull. London Math. Soc. 18 (1986), no. 6, 587–590. MR 859951, DOI 10.1112/blms/18.6.587
- David M. Evans and P. R. Hewitt, Counterexamples to a conjecture on relative categoricity, Ann. Pure Appl. Logic 46 (1990), no. 2, 201–209. MR 1042609, DOI 10.1016/0168-0072(90)90034-Y
- D. G. FitzGerald, A presentation for the monoid of uniform block permutations, Bull. Austral. Math. Soc. 68 (2003), no. 2, 317–324. MR 2016306, DOI 10.1017/S0004972700037692
- Paul Gartside and Bojana Pejić, Uniqueness of Polish group topology, Topology Appl. 155 (2008), no. 9, 992–999. MR 2401209, DOI 10.1016/j.topol.2008.01.001
- Edward D. Gaughan, Topological group structures of infinite symmetric groups, Proc. Nat. Acad. Sci. U.S.A. 58 (1967), 907–910. MR 215940, DOI 10.1073/pnas.58.3.907
- Steven Givant and Paul Halmos, Introduction to Boolean algebras, Undergraduate Texts in Mathematics, Springer, New York, 2009. MR 2466574, DOI 10.1007/978-0-387-68436-9
- Tom Halverson and Arun Ram, Partition algebras, European J. Combin. 26 (2005), no. 6, 869–921. MR 2143201, DOI 10.1016/j.ejc.2004.06.005
- Bernhard Herwig, Extending partial isomorphisms for the small index property of many $\omega$-categorical structures, Israel J. Math. 107 (1998), 93–123. MR 1658539, DOI 10.1007/BF02764005
- Bernhard Herwig and Daniel Lascar, Extending partial automorphisms and the profinite topology on free groups, Trans. Amer. Math. Soc. 352 (2000), no. 5, 1985–2021. MR 1621745, DOI 10.1090/S0002-9947-99-02374-0
- G. Hesse, Zur Topologisierbarkeit von Gruppen, Master’s Thesis, Univ. Hannover, Hannover, 1979.
- P. M. Higgins, J. M. Howie, J. D. Mitchell, and N. Ruškuc, Countable versus uncountable ranks in infinite semigroups of transformations and relations, Proc. Edinb. Math. Soc. (2) 46 (2003), no. 3, 531–544. MR 2013951, DOI 10.1017/S0013091502000974
- Wilfrid Hodges, Ian Hodkinson, Daniel Lascar, and Saharon Shelah, The small index property for $\omega$-stable $\omega$-categorical structures and for the random graph, J. London Math. Soc. (2) 48 (1993), no. 2, 204–218. MR 1231710, DOI 10.1112/jlms/s2-48.2.204
- Ehud Hrushovski, Extending partial isomorphisms of graphs, Combinatorica 12 (1992), no. 4, 411–416. MR 1194731, DOI 10.1007/BF01305233
- Robert R. Kallman, A uniqueness result for topological groups, Proc. Amer. Math. Soc. 54 (1976), 439–440. MR 417326, DOI 10.1090/S0002-9939-1976-0417326-4
- Robert R. Kallman, A uniqueness result for the infinite symmetric group, Studies in analysis, Adv. Math. Suppl. Stud., vol. 4, Academic Press, New York-London, 1979, pp. 321–322. MR 546814
- Robert R. Kallman, A uniqueness result for a class of compact connected groups, Conference in modern analysis and probability (New Haven, Conn., 1982) Contemp. Math., vol. 26, Amer. Math. Soc., Providence, RI, 1984, pp. 207–212. MR 737401, DOI 10.1090/conm/026/737401
- Robert R. Kallman, Uniqueness results for the $ax+b$ group and related algebraic objects, Fund. Math. 124 (1984), no. 3, 255–262. MR 774516, DOI 10.4064/fm-124-3-255-262
- Robert R. Kallman, Uniqueness results for homeomorphism groups, Trans. Amer. Math. Soc. 295 (1986), no. 1, 389–396. MR 831205, DOI 10.1090/S0002-9947-1986-0831205-0
- Robert R. Kallman and Alexander P. McLinden, The Poincaré and related groups are algebraically determined Polish groups, Collect. Math. 61 (2010), no. 3, 337–352. MR 2732376, DOI 10.1007/BF03191237
- Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597, DOI 10.1007/978-1-4612-4190-4
- Alexander S. Kechris and Christian Rosendal, Turbulence, amalgamation, and generic automorphisms of homogeneous structures, Proc. Lond. Math. Soc. (3) 94 (2007), no. 2, 302–350. MR 2308230, DOI 10.1112/plms/pdl007
- Sebastian Kerkhoff, Reinhard Pöschel, and Friedrich Martin Schneider, A short introduction to clones, Proceedings of the Workshop on Algebra, Coalgebra and Topology (WACT 2013), Electron. Notes Theor. Comput. Sci., vol. 303, Elsevier Sci. B. V., Amsterdam, 2014, pp. 107–120. MR 3213205, DOI 10.1016/j.entcs.2014.02.006
- Anton A. Klyachko, Alexander Yu. Olshanskii, and Denis V. Osin, On topologizable and non-topologizable groups, Topology Appl. 160 (2013), no. 16, 2104–2120. MR 3106464, DOI 10.1016/j.topol.2013.08.017
- D. Kuske and J. K. Truss, Generic automorphisms of the universal partial order, Proc. Amer. Math. Soc. 129 (2001), no. 7, 1939–1948. MR 1825900, DOI 10.1090/S0002-9939-00-05778-6
- Daniel Lascar, Autour de la propriété du petit indice, Proc. London Math. Soc. (3) 62 (1991), no. 1, 25–53 (French, with English summary). MR 1078212, DOI 10.1112/plms/s3-62.1.25
- Kathryn Mann, Automatic continuity for homeomorphism groups and applications, Geom. Topol. 20 (2016), no. 5, 3033–3056. With an appendix by Frédéric Le Roux and Mann. MR 3556355, DOI 10.2140/gt.2016.20.3033
- A. A. Markov, Three papers on topological groups: I. On the existence of periodic connected topological groups (Izv. Akad. Nauk SSSR Ser. Mat. 8 (1944), 225–232). II. On free topological groups (Izv. Akad. Nauk SSR Ser. Mat. 9 (1945), 3–64) III. On unconditionally closed sets, (Mat. Sb. (N.S.) 18 (1946)), American Mathematical Society, 1950, translation.
- R. Daniel Mauldin (ed.), The Scottish Book, 2nd ed., Birkhäuser/Springer, Cham, 2015. Mathematics from the Scottish Café with selected problems from the new Scottish Book; Including selected papers presented at the Scottish Book Conference held at North Texas University, Denton, TX, May 1979. MR 3242261, DOI 10.1007/978-3-319-22897-6
- Ralph N. McKenzie, George F. McNulty, and Walter F. Taylor, Algebras, lattices, varieties. Vol. 1, AMS Chelsea Publishing/American Mathematical Society, Providence, RI, 2018. Reprint of [ MR0883644]; ©1969. MR 3793673, DOI 10.1090/chel/383.H
- Michael Megrelishvili, Compactifications of semigroups and semigroup actions, Topology Proc. 31 (2007), no. 2, 611–650. MR 2476633
- Z. Mesyan, J. D. Mitchell, and Y. H. Presse, Topological transformation monoids, 2018.
- Zachary Mesyan, Generating self-map monoids of infinite sets, Semigroup Forum 75 (2007), no. 3, 649–676. MR 2353288, DOI 10.1007/s00233-007-0731-9
- Zachary Mesyan, Monoids of injective maps closed under conjugation by permutations, Israel J. Math. 189 (2011), no. 1, 287–305.
- Zak Mesyan, James D. Mitchell, MichałMorayne, and Yann H. Péresse, The Bergman-Shelah preorder on transformation semigroups, MLQ Math. Log. Q. 58 (2012), no. 6, 424–433. MR 2997031, DOI 10.1002/malq.201200002
- J. D. Mitchell and Y. Péresse, Generating countable sets of surjective functions, Fund. Math. 213 (2011), no. 1, 67–93. MR 2794936, DOI 10.4064/fm213-1-4
- A. Yu Olshanskii, A remark on a countable non-topologizable group (Russian), Vestnik Moskov Gos. Univ. Ser. I Mat. Mekh. 3 (1980), 103.
- Gianluca Paolini and Saharon Shelah, Reconstructing structures with the strong small index property up to bi-definability, Fund. Math. 247 (2019), no. 1, 25–35. MR 3984277, DOI 10.4064/fm640-9-2018
- Gianluca Paolini and Saharon Shelah, Automorphism groups of countable stable structures, Fund. Math. 248 (2020), no. 3, 301–307. MR 4046958, DOI 10.4064/fm723-4-2019
- Christian Pech and Maja Pech, On automatic homeomorphicity for transformation monoids, Monatsh. Math. 179 (2016), no. 1, 129–148. MR 3439276, DOI 10.1007/s00605-015-0767-y
- Christian Pech and Maja Pech, Reconstructing the topology of the elementary self-embedding monoids of countable saturated structures, Studia Logica 106 (2018), no. 3, 595–613. MR 3800938, DOI 10.1007/s11225-017-9756-6
- Christian Pech and Maja Pech, Polymorphism clones of homogeneous structures: gate coverings and automatic homeomorphicity, Algebra Universalis 79 (2018), no. 2, Paper No. 35, 24. MR 3788814, DOI 10.1007/s00012-018-0504-1
- E. B. Rabinovič, Imbedding theorems and de Bruijn’s problem for bounded symmetric groups, Dokl. Akad. Nauk BSSR 21 (1977), no. 9, 784–787, 859 (Russian). MR 457570
- Christian Rosendal, On the non-existence of certain group topologies, Fund. Math. 187 (2005), no. 3, 213–228. MR 2213935, DOI 10.4064/fm187-3-2
- Christian Rosendal and Sławomir Solecki, Automatic continuity of homomorphisms and fixed points on metric compacta, Israel J. Math. 162 (2007), 349–371. MR 2365867, DOI 10.1007/s11856-007-0102-y
- Matatyahu Rubin, On the reconstruction of $\aleph _0$-categorical structures from their automorphism groups, Proc. London Math. Soc. (3) 69 (1994), no. 2, 225–249. MR 1281964, DOI 10.1112/plms/s3-69.2.225
- Marcin Sabok, Automatic continuity for isometry groups, J. Inst. Math. Jussieu 18 (2019), no. 3, 561–590. MR 3936642, DOI 10.1017/s1474748017000135
- James H. Schmerl, Generic automorphisms and graph coloring, Discrete Math. 291 (2005), no. 1-3, 235–242. MR 2124065, DOI 10.1016/j.disc.2004.04.030
- Stephen W. Semmes, Endomorphisms of infinite symmetric groups, Abstracts, vol. 2, Amer. Math. Soc., 1981, pp. 265–293.
- Saharon Shelah, On a problem of Kurosh, Jónsson groups, and applications, Word problems, II (Conf. on Decision Problems in Algebra, Oxford, 1976) Stud. Logic Found. Math., vol. 95, North-Holland, Amsterdam-New York, 1980, pp. 373–394. MR 579953
- Saharon Shelah, Can you take Solovay’s inaccessible away?, Israel J. Math. 48 (1984), no. 1, 1–47. MR 768264, DOI 10.1007/BF02760522
- Sławomir Solecki, Extending partial isometries, Israel J. Math. 150 (2005), 315–331. MR 2255813, DOI 10.1007/BF02762385
- Robert M. Solovay, A model of set-theory in which every set of reals is Lebesgue measurable, Ann. of Math. (2) 92 (1970), 1–56. MR 265151, DOI 10.2307/1970696
- M. H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41 (1937), no. 3, 375–481. MR 1501905, DOI 10.1090/S0002-9947-1937-1501905-7
- V. Trnková and J. Sichler, All clones are centralizer clones, Algebra Universalis 61 (2009), no. 1, 77–95. MR 2551786, DOI 10.1007/s00012-009-0004-4
- J. K. Truss, Infinite permutation groups. II. Subgroups of small index, J. Algebra 120 (1989), no. 2, 494–515. MR 989913, DOI 10.1016/0021-8693(89)90212-3
- J. K. Truss, Infinite permutation groups. II. Subgroups of small index, J. Algebra 120 (1989), no. 2, 494–515. MR 989913, DOI 10.1016/0021-8693(89)90212-3
- Todor Tsankov, Automatic continuity for the unitary group, Proc. Amer. Math. Soc. 141 (2013), no. 10, 3673–3680. MR 3080189, DOI 10.1090/S0002-9939-2013-11666-7
- V. V. Uspenskiĭ, A universal topological group with a countable basis, Funktsional. Anal. i Prilozhen. 20 (1986), no. 2, 86–87 (Russian). MR 847156
- Jan van Mill, The infinite-dimensional topology of function spaces, North-Holland Mathematical Library, vol. 64, North-Holland Publishing Co., Amsterdam, 2001. MR 1851014
- Khwancheewa Wattanatripop and Thawhat Changphas, Clones of terms of a fixed variable, Mathematics 8 (2020), no. 2, 260.
- Itaï Ben Yaacov, Alexander Berenstein, and Julien Melleray, Polish topometric groups, Trans. Amer. Math. Soc. 365 (2013), no. 7, 3877–3897. MR 3042607, DOI 10.1090/S0002-9947-2013-05773-X
Bibliographic Information
- L. Elliott
- Affiliation: L. Elliott: Department of Mathematics and Statistics, Binghamton University
- MR Author ID: 1553718
- ORCID: 0000-0002-3584-7266
- Email: luke.elliott142857@gmail.com
- J. Jonušas
- Affiliation: Institut für Diskrete Mathematik & Geometrie, Technische Universität Wien, Austria
- ORCID: 0000-0003-3279-5939
- Email: j.jonusas@gmail.com
- Z. Mesyan
- Affiliation: Department of Mathematics, University of Colorado, Colorado Springs, Colorado
- MR Author ID: 747892
- ORCID: 0000-0001-5201-3418
- Email: zmesyan@uccs.edu
- J. D. Mitchell
- Affiliation: University of St Andrews, School of Mathematics and Statistics, Scotland
- MR Author ID: 691066
- ORCID: 0000-0002-5489-1617
- Email: jdm3@st-andrews.ac.uk
- M. Morayne
- Affiliation: Department of Fundamental Problems of Technology, Wrocław University of Science and Technology, Poland
- MR Author ID: 126835
- ORCID: 0000-0002-9856-479X
- Email: michal.morayne@pwr.edu.pl
- Y. Péresse
- Affiliation: Department of Physics, Astronomy, and Mathematics, University of Hertfordshire, United Kingdom
- ORCID: 0000-0002-0981-4946
- Email: y.peresse@herts.ac.uk
- Received by editor(s): November 10, 2021
- Received by editor(s) in revised form: May 10, 2023
- Published electronically: August 22, 2023
- Additional Notes: The first author was supported by Mathematics and Statistics at the University of St Andrews for their Ph.D. studies. The second author received funding from the Austrian Science Fund (FWF) through Lise Meitner grant No. M 2555
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 8023-8093
- MSC (2020): Primary 20M20, 20M30, 22A15, 54H11
- DOI: https://doi.org/10.1090/tran/8987
- MathSciNet review: 4657227