$R=T$ theorems for weight one modular forms
HTML articles powered by AMS MathViewer
- by Tobias Berger and Krzysztof Klosin;
- Trans. Amer. Math. Soc. 376 (2023), 8095-8128
- DOI: https://doi.org/10.1090/tran/9001
- Published electronically: August 22, 2023
- HTML | PDF | Request permission
Abstract:
We prove modularity of certain residually reducible ordinary 2-dimensional $p$-adic Galois representations with determinant a finite order odd character $\chi$. For certain non-quadratic $\chi$ we prove an $R=T$ result for $T$ the weight 1 specialisation of the cuspidal Hida Hecke algebra acting on non-classical weight 1 forms. Under the additional assumption that no two cuspidal Hida families congruent to an Eisenstein series cross in weight 1 we show that $T$ is reduced. For quadratic $\chi$ we prove that the quotient of $R$ corresponding to deformations split at $p$ is isomorphic to the Hecke algebra acting on classical CM weight 1 modular forms.References
- J. Bellaïche and G. Chenevier, Lissité de la courbe de Hecke de $\rm GL_2$ aux points Eisenstein critiques, J. Inst. Math. Jussieu 5 (2006), no. 2, 333–349 (French, with English and French summaries). MR 2225045, DOI 10.1017/S1474748006000028
- Joël Bellaïche and Gaëtan Chenevier, Families of Galois representations and Selmer groups, Astérisque 324 (2009), xii+314 (English, with English and French summaries). MR 2656025
- Joël Bellaïche and Mladen Dimitrov, On the eigencurve at classical weight 1 points, Duke Math. J. 165 (2016), no. 2, 245–266. MR 3457673, DOI 10.1215/00127094-3165755
- Adel Betina, Mladen Dimitrov, and Alice Pozzi, On the failure of Gorensteinness at weight 1 Eisenstein points of the eigencurve, Amer. J. Math. 144 (2022), no. 1, 227–265. MR 4367418, DOI 10.1353/ajm.2022.0004
- Tobias Berger and Krzysztof Klosin, An $R=T$ theorem for imaginary quadratic fields, Math. Ann. 349 (2011), no. 3, 675–703. MR 2755003, DOI 10.1007/s00208-010-0540-4
- Tobias Berger and Krzysztof Klosin, On deformation rings of residually reducible Galois representations and $R=T$ theorems, Math. Ann. 355 (2013), no. 2, 481–518. MR 3010137, DOI 10.1007/s00208-012-0793-1
- Tobias Berger and Krzysztof Klosin, Modularity of residual Galois extensions and the Eisenstein ideal, Trans. Amer. Math. Soc. 372 (2019), no. 11, 8043–8065. MR 4029689, DOI 10.1090/tran/7851
- Tobias Berger and Krzysztof Klosin, Deformations of Saito-Kurokawa type and the paramodular conjecture, Amer. J. Math. 142 (2020), no. 6, 1821–1875. With and appendix by Chris Poor, Jerry Shurman, and David S. Yuen. MR 4176546, DOI 10.1353/ajm.2020.0052
- Tobias Berger, Krzysztof Klosin, and Kenneth Kramer, On higher congruences between automorphic forms, Math. Res. Lett. 21 (2014), no. 1, 71–82. MR 3247039, DOI 10.4310/MRL.2014.v21.n1.a5
- Joël Bellaïche and Robert Pollack, Congruences with Eisenstein series and $\mu$-invariants, Compos. Math. 155 (2019), no. 5, 863–901. MR 3937702, DOI 10.1112/s0010437x19007127
- Kevin Buzzard and Richard Taylor, Companion forms and weight one forms, Ann. of Math. (2) 149 (1999), no. 3, 905–919. MR 1709306, DOI 10.2307/121076
- Francesc Castella and Carl Wang-Erickson, Class groups and local indecomposability for non-CM forms, J. Eur. Math. Soc. (JEMS) 24 (2022), no. 4, 1103–1160. With an appendix by Haruzo Hida. MR 4397038, DOI 10.4171/JEMS/1107
- Mladen Dimitrov and Eknath Ghate, On classical weight one forms in Hida families, J. Théor. Nombres Bordeaux 24 (2012), no. 3, 669–690 (English, with English and French summaries). MR 3010634, DOI 10.5802/jtnb.816
- Henri Darmon, Alan Lauder, and Victor Rotger, Stark points and $p$-adic iterated integrals attached to modular forms of weight one, Forum Math. Pi 3 (2015), e8, 95. MR 3456180, DOI 10.1017/fmp.2015.7
- Pierre Deligne and Jean-Pierre Serre, Formes modulaires de poids $1$, Ann. Sci. École Norm. Sup. (4) 7 (1974), 507–530 (1975) (French). MR 379379, DOI 10.24033/asens.1277
- Neil Dummigan and David Spencer, Congruences of local origin and automorphic induction, Int. J. Number Theory 17 (2021), no. 7, 1617–1629. MR 4295374, DOI 10.1142/S1793042121500512
- Jean-Marc Fontaine and Barry Mazur, Geometric Galois representations, Elliptic curves, modular forms, & Fermat’s last theorem (Hong Kong, 1993) Ser. Number Theory, I, Int. Press, Cambridge, MA, 1995, pp. 41–78. MR 1363495
- Bruce Ferrero and Lawrence C. Washington, The Iwasawa invariant $\mu _{p}$ vanishes for abelian number fields, Ann. of Math. (2) 109 (1979), no. 2, 377–395. MR 528968, DOI 10.2307/1971116
- Haruzo Hida, Iwasawa modules attached to congruences of cusp forms, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 2, 231–273. MR 868300, DOI 10.24033/asens.1507
- Mark Kisin, The Fontaine-Mazur conjecture for $\textrm {GL}_2$, J. Amer. Math. Soc. 22 (2009), no. 3, 641–690. MR 2505297, DOI 10.1090/S0894-0347-09-00628-6
- Matthew J. Lafferty, Eichler-Shimura cohomology groups and the Iwasawa main conjecture, ProQuest LLC, Ann Arbor, MI, 2015. Thesis (Ph.D.)–The University of Arizona. MR 3358223
- The LMFDB Collaboration, The L-functions and modular forms database, 2022, http://www.lmfdb.org, [Online; accessed 14 January 2022].
- The LMFDB Collaboration, The L-functions and modular forms database, Home page of the Dirichlet character 157.d, 2022, https://www.lmfdb.org/Character/Dirichlet/157/28, [Online; accessed 14 January 2022].
- Toshitsune Miyake, Modular forms, Springer-Verlag, Berlin, 1989. Translated from the Japanese by Yoshitaka Maeda. MR 1021004, DOI 10.1007/3-540-29593-3
- B. Mazur and A. Wiles, Class fields of abelian extensions of $\textbf {Q}$, Invent. Math. 76 (1984), no. 2, 179–330. MR 742853, DOI 10.1007/BF01388599
- B. Mazur and A. Wiles, On $p$-adic analytic families of Galois representations, Compositio Math. 59 (1986), no. 2, 231–264. MR 860140
- Jürgen Neukirch, Algebraic number theory, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 322, Springer-Verlag, Berlin, 1999. Translated from the 1992 German original and with a note by Norbert Schappacher; With a foreword by G. Harder. MR 1697859, DOI 10.1007/978-3-662-03983-0
- Masami Ohta, Companion forms and the structure of $p$-adic Hecke algebras, J. Reine Angew. Math. 585 (2005), 141–172. MR 2164625, DOI 10.1515/crll.2005.2005.585.141
- Lue Pan, The Fontaine-Mazur conjecture in the residually reducible case, J. Amer. Math. Soc. 35 (2022), no. 4, 1031–1169. MR 4467307, DOI 10.1090/jams/991
- Lue Pan, On locally analytic vectors of the completed cohomology of modular curves, Forum Math. Pi 10 (2022), Paper No. e7, 82. MR 4390302, DOI 10.1017/fmp.2022.1
- Kenneth A. Ribet, A modular construction of unramified $p$-extensions of $Q(\mu _{p})$, Invent. Math. 34 (1976), no. 3, 151–162. MR 419403, DOI 10.1007/BF01403065
- Karl Rubin, Euler systems, Annals of Mathematics Studies, vol. 147, Princeton University Press, Princeton, NJ, 2000. Hermann Weyl Lectures. The Institute for Advanced Study. MR 1749177, DOI 10.1515/9781400865208
- Shankar Sen, Continuous cohomology and $p$-adic Galois representations, Invent. Math. 62 (1980/81), no. 1, 89–116. MR 595584, DOI 10.1007/BF01391665
- J.-P. Serre, Modular forms of weight one and Galois representations, Algebraic number fields: $L$-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975) Academic Press, London-New York, 1977, pp. 193–268. MR 450201
- C. M. Skinner and A. J. Wiles, Ordinary representations and modular forms, Proc. Nat. Acad. Sci. U.S.A. 94 (1997), no. 20, 10520–10527. MR 1471466, DOI 10.1073/pnas.94.20.10520
- C. M. Skinner and A. J. Wiles, Residually reducible representations and modular forms, Inst. Hautes Études Sci. Publ. Math. 89 (1999), 5–126 (2000). MR 1793414
- The Sage Developers, Sagemath, the Sage Mathematics software system (version 8.3), 2018, http://www.sagemath.org.
- S. Ullom, Integral normal bases in Galois extensions of local fields, Nagoya Math. J. 39 (1970), 141–148. MR 263790, DOI 10.1017/S0027763000013751
- Eric Urban, Selmer groups and the Eisenstein-Klingen ideal, Duke Math. J. 106 (2001), no. 3, 485–525. MR 1813234, DOI 10.1215/S0012-7094-01-10633-9
- Lawrence C. Washington, Introduction to cyclotomic fields, 2nd ed., Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1997. MR 1421575, DOI 10.1007/978-1-4612-1934-7
- A. Wiles, On ordinary $\lambda$-adic representations associated to modular forms, Invent. Math. 94 (1988), no. 3, 529–573. MR 969243, DOI 10.1007/BF01394275
- A. Wiles, The Iwasawa conjecture for totally real fields, Ann. of Math. (2) 131 (1990), no. 3, 493–540. MR 1053488, DOI 10.2307/1971468
- Andrew Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2) 141 (1995), no. 3, 443–551. MR 1333035, DOI 10.2307/2118559
- Preston Wake and Carl Wang-Erickson, The rank of Mazur’s Eisenstein ideal, Duke Math. J. 169 (2020), no. 1, 31–115. MR 4047548, DOI 10.1215/00127094-2019-0039
- P. Wake and C. Wang-Erickson, The Eisenstein ideal with squarefree level, Adv. Math. 380 (2021), 107543.
Bibliographic Information
- Tobias Berger
- Affiliation: School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, United Kingdom
- MR Author ID: 830077
- Email: tberger@cantab.net
- Krzysztof Klosin
- Affiliation: Department of Mathematics, Queens College, City University of New York, 65-30 Kissena Blvd, Queens, New York 11367
- MR Author ID: 842947
- Email: kklosin@qc.cuny.edu
- Received by editor(s): March 21, 2022
- Received by editor(s) in revised form: December 10, 2022, and May 22, 2023
- Published electronically: August 22, 2023
- Additional Notes: The first author’s research was supported by the EPSRC Grant EP/R006563/1. The second author was supported by a Collaboration for Mathematicians Grant #578231 from the Simons Foundation and by a PSC-CUNY award jointly funded by the Professional Staff Congress and the City University of New York.
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 8095-8128
- MSC (2020): Primary 11F80; Secondary 11F33
- DOI: https://doi.org/10.1090/tran/9001
- MathSciNet review: 4657228