On signs of Fourier coefficients of Hecke-Maass cusp forms on $\mathrm {GL}_3$
HTML articles powered by AMS MathViewer
- by Jesse Jääsaari;
- Trans. Amer. Math. Soc. 376 (2023), 8193-8223
- DOI: https://doi.org/10.1090/tran/9012
- Published electronically: August 14, 2023
- HTML | PDF | Request permission
Abstract:
We consider sign changes of Fourier coefficients of Hecke-Maass cusp forms for the group $\mathrm {SL}_3(\mathbb Z)$. When the underlying form is self-dual, we show that there are $\gg _\varepsilon X^{5/6-\varepsilon }$ sign changes among the coefficients $\{A(m,1)\}_{m\leq X}$ and that there is a positive proportion of sign changes for many self-dual forms. Similar result concerning the positive proportion of sign changes also hold for the real-valued coefficients $A(m,m)$ for generic $\mathrm {GL}_3$ cusp forms, a result which is based on a new effective Sato-Tate type theorem for a family of $\mathrm {GL}_3$ cusp forms we establish. In addition, non-vanishing of the Fourier coefficients is studied under the Ramanujan-Petersson conjecture.References
- S. Bernstein, Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités, Comm. Soc. Math. Kharkov 13 (1912), 1–2.
- Valentin Blomer, Applications of the Kuznetsov formula on $GL(3)$, Invent. Math. 194 (2013), no. 3, 673–729. MR 3127065, DOI 10.1007/s00222-013-0454-3
- Valentin Blomer, Jack Buttcane, and Nicole Raulf, A Sato-Tate law for $\rm GL (3)$, Comment. Math. Helv. 89 (2014), no. 4, 895–919. MR 3284298, DOI 10.4171/CMH/337
- Jack Buttcane and Fan Zhou, Plancherel distribution of Satake parameters of Maass cusp forms on $\textrm {GL}_3$, Int. Math. Res. Not. IMRN 5 (2020), 1417–1444. MR 4073945, DOI 10.1093/imrn/rny061
- W. Casselman and J. Shalika, The unramified principal series of $p$-adic groups. II. The Whittaker function, Compositio Math. 41 (1980), no. 2, 207–231. MR 581582
- Dorian Goldfeld, Automorphic forms and $L$-functions for the group $\textrm {GL}(n,\mathbf R)$, Cambridge Studies in Advanced Mathematics, vol. 99, Cambridge University Press, Cambridge, 2006. With an appendix by Kevin A. Broughan. MR 2254662, DOI 10.1017/CBO9780511542923
- Dorian Goldfeld, Eric Stade, and Michael Woodbury, An orthogonality relation for $\rm GL(4, \Bbb R)$ (with an appendix by Bingrong Huang), Forum Math. Sigma 9 (2021), Paper No. e47, 83. MR 4271357, DOI 10.1017/fms.2021.39
- Andrew Granville, Dimitris Koukoulopoulos, and Kaisa Matomäki, When the sieve works, Duke Math. J. 164 (2015), no. 10, 1935–1969. MR 3369306, DOI 10.1215/00127094-3120891
- João Guerreiro, An orthogonality relation for a thin family of $\textrm {GL}(3)$ Maass forms, Int. J. Number Theory 11 (2015), no. 8, 2277–2294. MR 3420744, DOI 10.1142/S1793042115501031
- D. R. Heath-Brown and K. Tsang, Sign changes of $E(T)$, $\Delta (x)$, and $P(x)$, J. Number Theory 49 (1994), no. 1, 73–83. MR 1295953, DOI 10.1006/jnth.1994.1081
- Thomas A. Hulse, Chan Ieong Kuan, David Lowry-Duda, and Alexander Walker, Sign changes of coefficients and sums of coefficients of $L$-functions, J. Number Theory 177 (2017), 112–135. MR 3629237, DOI 10.1016/j.jnt.2017.01.007
- Henryk Iwaniec and Emmanuel Kowalski, Analytic number theory, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004. MR 2061214, DOI 10.1090/coll/053
- Yujiao Jiang and Guangshi Lü, Fourth power moment of coefficients of automorphic $L$-functions for $\textrm {GL}(m)$, Forum Math. 29 (2017), no. 5, 1199–1212. MR 3692033, DOI 10.1515/forum-2016-0097
- Yujiao Jiang, Guangshi Lü, and Zhiwei Wang, Exponential sums with multiplicative coefficients without the Ramanujan conjecture, Math. Ann. 379 (2021), no. 1-2, 589–632. MR 4211098, DOI 10.1007/s00208-020-02108-z
- Shin-ichi Kato, Spherical functions and a $q$-analogue of Kostant’s weight multiplicity formula, Invent. Math. 66 (1982), no. 3, 461–468. MR 662602, DOI 10.1007/BF01389223
- H. H. Kim and P. Sarnak, Refined estimates towards the Ramanujan and Selberg conjectures, J. Amer. Math. Soc. 16 (2003), 175–183.
- Winfried Kohnen, Yuk-Kam Lau, and Igor E. Shparlinski, On the number of sign changes of Hecke eigenvalues of newforms, J. Aust. Math. Soc. 85 (2008), no. 1, 87–94. MR 2460867, DOI 10.1017/S1446788708000323
- E. Kowalski, Y.-K. Lau, K. Soundararajan, and J. Wu, On modular signs, Math. Proc. Cambridge Philos. Soc. 149 (2010), no. 3, 389–411. MR 2726725, DOI 10.1017/S030500411000040X
- Yuk-Kam Lau, Jianya Liu, and Jie Wu, Local behavior of arithmetical functions with applications to automorphic $L$-functions, Int. Math. Res. Not. IMRN 16 (2017), 4815–4839. MR 3687117, DOI 10.1093/imrn/rnw148
- Yuk-Kam Lau, Jianya Liu, and Jie Wu, Sign changes of the coefficients of automorphic $L$-functions, Number theory—arithmetic in Shangri-La, Ser. Number Theory Appl., vol. 8, World Sci. Publ., Hackensack, NJ, 2013, pp. 141–181. MR 3089015, DOI 10.1142/9789814452458_{0}009
- Yuk-Kam Lau, Ming Ho Ng, Emmanuel Royer, and Yingnan Wang, A large sieve inequality of Elliott-Montgomery-Vaughan type for Maass forms on $\textrm {GL}(n,\Bbb R)$ with applications, Rev. Mat. Iberoam. 37 (2021), no. 4, 1539–1552. MR 4269408, DOI 10.4171/rmi/1238
- Y.-K. Lau, M. Ho Ng, and Y. Wang, Average bound toward the generalized Ramanujan conjecture and its applications on Sato-Tate laws for $\mathrm {GL}(n)$, IMRN (2020).
- Yuk-kam Lau, Emmanuel Royer, and Jie Wu, Sign of Fourier coefficients of modular forms of half-integral weight, Mathematika 62 (2016), no. 3, 866–883. MR 3521358, DOI 10.1112/S0025579316000103
- Yuk-Kam Lau and Yingnan Wang, Quantitative version of the joint distribution of eigenvalues of the Hecke operators, J. Number Theory 131 (2011), no. 12, 2262–2281. MR 2832823, DOI 10.1016/j.jnt.2011.05.014
- Y.-K. Lau and J. Wu, The number of Hecke eigenvalues of same signs, Math. Z. 263 (2009), no. 4, 959–970. MR 2551607, DOI 10.1007/s00209-008-0448-9
- Stephen Lester, Kaisa Matomäki, and Maksym Radziwiłł, Small scale distribution of zeros and mass of modular forms, J. Eur. Math. Soc. (JEMS) 20 (2018), no. 7, 1595–1627. MR 3807308, DOI 10.4171/JEMS/794
- Stephen Lester and Maksym Radziwiłł, Signs of Fourier coefficients of half-integral weight modular forms, Math. Ann. 379 (2021), no. 3-4, 1553–1604. MR 4238273, DOI 10.1007/s00208-020-02123-0
- Yongxiao Lin, Ramon Nunes, and Zhi Qi, Strong subconvexity for self-dual $\rm GL(3)$ $L$-functions, Int. Math. Res. Not. IMRN 13 (2023), 11453–11470. MR 4609788, DOI 10.1093/imrn/rnac153
- Jianya Liu, Yan Qu, and Jie Wu, Two Linnik-type problems for automorphic $L$-functions, Math. Proc. Cambridge Philos. Soc. 151 (2011), no. 2, 219–227. MR 2823131, DOI 10.1017/S0305004111000314
- Jianya Liu, Yonghui Wang, and Yangbo Ye, A proof of Selberg’s orthogonality for automorphic $L$-functions, Manuscripta Math. 118 (2005), no. 2, 135–149. MR 2177681, DOI 10.1007/s00229-005-0563-4
- Jianya Liu and Jie Wu, The number of coefficients of automorphic $L$-functions for $GL_m$ of same signs, J. Number Theory 148 (2015), 429–450. MR 3283188, DOI 10.1016/j.jnt.2014.09.020
- Kaisa Matomäki, On signs of Fourier coefficients of cusp forms, Math. Proc. Cambridge Philos. Soc. 152 (2012), no. 2, 207–222. MR 2887873, DOI 10.1017/S030500411100034X
- Kaisa Matomäki and Maksym Radziwiłł, Sign changes of Hecke eigenvalues, Geom. Funct. Anal. 25 (2015), no. 6, 1937–1955. MR 3432161, DOI 10.1007/s00039-015-0350-7
- Kaisa Matomäki and Maksym Radziwiłł, Multiplicative functions in short intervals, Ann. of Math. (2) 183 (2016), no. 3, 1015–1056. MR 3488742, DOI 10.4007/annals.2016.183.3.6
- Jasmin Matz and Nicolas Templier, Sato-Tate equidistribution for families of Hecke-Maass forms on $\textrm {SL}(n, \Bbb R )\slash \textrm {SO}(n)$, Algebra Number Theory 15 (2021), no. 6, 1343–1428. MR 4324829, DOI 10.2140/ant.2021.15.1343
- Jaban Meher and M. Ram Murty, Oscillations of coefficients of Dirichlet series attached to automorphic forms, Proc. Amer. Math. Soc. 145 (2017), no. 2, 563–575. MR 3577861, DOI 10.1090/proc/13264
- M. Ram Murty and Kaneenika Sinha, Effective equidistribution of eigenvalues of Hecke operators, J. Number Theory 129 (2009), no. 3, 681–714. MR 2488597, DOI 10.1016/j.jnt.2008.10.010
- Yan Qu, Linnik-type problems for automorphic $L$-functions, J. Number Theory 130 (2010), no. 3, 786–802. MR 2584855, DOI 10.1016/j.jnt.2009.08.015
- Dinakar Ramakrishnan, An exercise concerning the selfdual cusp forms on $\textrm {GL}(3)$, Indian J. Pure Appl. Math. 45 (2014), no. 5, 777–785. MR 3286086, DOI 10.1007/s13226-014-0088-1
- B. Saffari and R. C. Vaughan, On the fractional parts of $x/n$ and related sequences. III, Ann. Inst. Fourier (Grenoble) 27 (1977), no. 2, v, 31–36 (English, with French summary). MR 480390, DOI 10.5802/aif.3002
- Peter Sarnak, Statistical properties of eigenvalues of the Hecke operators, Analytic number theory and Diophantine problems (Stillwater, OK, 1984) Progr. Math., vol. 70, Birkhäuser Boston, Boston, MA, 1987, pp. 321–331. MR 1018385
- Jean-Pierre Serre, Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Études Sci. Publ. Math. 54 (1981), 323–401 (French). MR 644559
- Takuro Shintani, On an explicit formula for class-$1$ “Whittaker functions” on $GL_{n}$ over $P$-adic fields, Proc. Japan Acad. 52 (1976), no. 4, 180–182. MR 407208
- A. Steiger, Some aspects of families of cusp forms, PhD. thesis, ETH Zürich, 2014.
- Xuanxuan Xiao and Zhao Xu, A large sieve inequality of Elliott-Montgomery-Vaughan type for automorphic forms on $\textrm {GL}_3$, Rev. Mat. Iberoam. 35 (2019), no. 6, 1693–1714. MR 4029780, DOI 10.4171/rmi/1098
- Fan Zhou, Weighted Sato-Tate vertical distribution of the Satake parameter of Maass forms on $\textrm {PGL}(N)$, Ramanujan J. 35 (2014), no. 3, 405–425. MR 3274875, DOI 10.1007/s11139-013-9535-6
Bibliographic Information
- Jesse Jääsaari
- Affiliation: School of Mathematical Sciences, Queen Mary University of London, E1 4NS, London, United Kingdom
- ORCID: 0000-0002-6456-4134
- Email: j.jaasaari@qmul.ac.uk
- Received by editor(s): September 12, 2022
- Received by editor(s) in revised form: June 12, 2023
- Published electronically: August 14, 2023
- Additional Notes: This work was supported by the Finnish Cultural Foundation and the Engineering and Physical Sciences Research Council [grant number EP/T028343/1].
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 8193-8223
- MSC (2020): Primary 11F30
- DOI: https://doi.org/10.1090/tran/9012
- MathSciNet review: 4657231