Weak K.A.M. solutions and minimizing orbits of twist maps
HTML articles powered by AMS MathViewer
- by Marie-Claude Arnaud and Maxime Zavidovique;
- Trans. Amer. Math. Soc. 376 (2023), 8129-8171
- DOI: https://doi.org/10.1090/tran/9017
- Published electronically: September 1, 2023
- HTML | PDF | Request permission
Abstract:
For exact symplectic twist maps of the annulus, we establish a choice of weak K.A.M. solutions $u_c=u(\cdot , c)$ that depend in a Lipschitz-continuous way on the cohomology class $c$. This allows us to make a bridge between weak K.A.M. theory of Fathi, Aubry-Mather theory for semi-orbits as developed by Bangert and existence of backward invariant pseudo-foliations as seen by Katnelson & Ornstein. We deduce a very precise description of the pseudographs of the weak K.A.M. solutions and many interesting results asReferences
- S. Aubry and P. Y. Le Daeron, The discrete Frenkel-Kontorova model and its extensions. I. Exact results for the ground-states, Phys. D 8 (1983), no. 3, 381–422. MR 719634, DOI 10.1016/0167-2789(83)90233-6
- M.-C. Arnaud, Convergence of the semi-group of Lax-Oleinik: a geometric point of view, Nonlinearity 18 (2005), no. 4, 1835–1840. MR 2150356, DOI 10.1088/0951-7715/18/4/021
- M.-C. Arnaud, Three results on the regularity of the curves that are invariant by an exact symplectic twist map, Publ. Math. Inst. Hautes Études Sci. 109 (2009), 1–17. MR 2511585, DOI 10.1007/s10240-009-0017-8
- M.-C. Arnaud, Pseudographs and the Lax-Oleinik semi-group: a geometric and dynamical interpretation, Nonlinearity 24 (2011), no. 1, 71–78. MR 2739831, DOI 10.1088/0951-7715/24/1/003
- Marie-Claude Arnaud, Hyperbolicity for conservative twist maps of the 2-dimensional annulus, Publ. Mat. Urug. 16 (2016), 1–39. MR 3633267
- Marie-Claude Arnaud and Maxime Zavidovique, Actions of symplectic homeomorphisms/diffeomorphisms on foliations by curves in dimension 2, Ergodic Theory Dynam. Systems 43 (2023), no. 3, 794–826. MR 4544144, DOI 10.1017/etds.2021.158
- V. Bangert, Mather sets for twist maps and geodesics on tori, Dynamics reported, Vol. 1, Dynam. Report. Ser. Dynam. Systems Appl., vol. 1, Wiley, Chichester, 1988, pp. 1–56. MR 945963
- Victor Bangert, Geodesic rays, Busemann functions and monotone twist maps, Calc. Var. Partial Differential Equations 2 (1994), no. 1, 49–63. MR 1384394, DOI 10.1007/BF01234315
- Patrick Bernard, The Lax-Oleinik semi-group: a Hamiltonian point of view, Proc. Roy. Soc. Edinburgh Sect. A 142 (2012), no. 6, 1131–1177. MR 3002592, DOI 10.1017/S0308210511000059
- Patrick Bernard, The dynamics of pseudographs in convex Hamiltonian systems, J. Amer. Math. Soc. 21 (2008), no. 3, 615–669. MR 2393423, DOI 10.1090/S0894-0347-08-00591-2
- Patrick Bernard, Connecting orbits of time dependent Lagrangian systems, Ann. Inst. Fourier (Grenoble) 52 (2002), no. 5, 1533–1568 (English, with English and French summaries). MR 1935556, DOI 10.5802/aif.1924
- Patrick Bernard, Existence of $C^{1,1}$ critical sub-solutions of the Hamilton-Jacobi equation on compact manifolds, Ann. Sci. École Norm. Sup. (4) 40 (2007), no. 3, 445–452 (English, with English and French summaries). MR 2493387, DOI 10.1016/j.ansens.2007.01.004
- Patrick Bernard, Lasry-Lions regularization and a lemma of Ilmanen, Rend. Semin. Mat. Univ. Padova 124 (2010), 221–229. MR 2752687, DOI 10.4171/RSMUP/124-15
- George D. Birkhoff, Surface transformations and their dynamical applications, Acta Math. 43 (1922), no. 1, 1–119. MR 1555175, DOI 10.1007/BF02401754
- Piermarco Cannarsa and Carlo Sinestrari, Semiconcave functions, Hamilton-Jacobi equations, and optimal control, Progress in Nonlinear Differential Equations and their Applications, vol. 58, Birkhäuser Boston, Inc., Boston, MA, 2004. MR 2041617
- Chong-Qing Cheng and Jinxin Xue, Order property and modulus of continuity of weak KAM solutions, Calc. Var. Partial Differential Equations 57 (2018), no. 2, Paper No. 65, 27. MR 3776355, DOI 10.1007/s00526-018-1324-z
- Andrea Davini, Albert Fathi, Renato Iturriaga, and Maxime Zavidovique, Convergence of the solutions of the discounted Hamilton-Jacobi equation: convergence of the discounted solutions, Invent. Math. 206 (2016), no. 1, 29–55. MR 3556524, DOI 10.1007/s00222-016-0648-6
- Andrea Davini, Albert Fathi, Renato Iturriaga, and Maxime Zavidovique, Convergence of the solutions of the discounted equation: the discrete case, Math. Z. 284 (2016), no. 3-4, 1021–1034. MR 3563265, DOI 10.1007/s00209-016-1685-y
- A. Fathi, Une interprétation plus topologique de la démonstration du théorème de Birkhoff, appendice au ch. 1 de \cite{He1}, pp. 39–46.
- A. Fathi, Weak K.A.M. theorem in Lagrangian dynamics, Preprint.
- A. Fathi and M. Zavidovique, Ilmanen’s lemma on insertion of $C^{1,1}$ functions, Rend. Semin. Mat. Univ. Padova 124 (2010), 203–219. MR 2752686, DOI 10.4171/RSMUP/124-14
- John N. Mather and Giovanni Forni, Action minimizing orbits in Hamiltonian systems, Transition to chaos in classical and quantum mechanics (Montecatini Terme, 1991) Lecture Notes in Math., vol. 1589, Springer, Berlin, 1994, pp. 92–186. MR 1323222, DOI 10.1007/BFb0074076
- Eduardo Garibaldi and Philippe Thieullen, Minimizing orbits in the discrete Aubry-Mather model, Nonlinearity 24 (2011), no. 2, 563–611. MR 2765475, DOI 10.1088/0951-7715/24/2/008
- Christophe Golé, Symplectic twist maps, Advanced Series in Nonlinear Dynamics, vol. 18, World Scientific Publishing Co., Inc., River Edge, NJ, 2001. Global variational techniques. MR 1992005, DOI 10.1142/9789812810762
- Michael-R. Herman, Sur les courbes invariantes par les difféomorphismes de l’anneau. Vol. 1, Astérisque, vol. 103, Société Mathématique de France, Paris, 1983 (French). With an appendix by Albert Fathi; With an English summary. MR 728564
- Y. Katznelson and D. S. Ornstein, Twist maps and Aubry-Mather sets, Lipa’s legacy (New York, 1995) Contemp. Math., vol. 211, Amer. Math. Soc., Providence, RI, 1997, pp. 343–357. MR 1476996, DOI 10.1090/conm/211/02829
- Zhenguo Liang, Jun Yan, and Yingfei Yi, Viscous stability of quasi-periodic tori, Ergodic Theory Dynam. Systems 34 (2014), no. 1, 185–210. MR 3163030, DOI 10.1017/etds.2012.120
- Ricardo Mañé, On the minimizing measures of Lagrangian dynamical systems, Nonlinearity 5 (1992), no. 3, 623–638. MR 1166538
- John N. Mather, Existence of quasiperiodic orbits for twist homeomorphisms of the annulus, Topology 21 (1982), no. 4, 457–467. MR 670747, DOI 10.1016/0040-9383(82)90023-4
- John N. Mather, Differentiability of the minimal average action as a function of the rotation number, Bol. Soc. Brasil. Mat. (N.S.) 21 (1990), no. 1, 59–70. MR 1139556, DOI 10.1007/BF01236280
- John N. Mather, Action minimizing invariant measures for positive definite Lagrangian systems, Math. Z. 207 (1991), no. 2, 169–207. MR 1109661, DOI 10.1007/BF02571383
- Jürgen Moser, Monotone twist mappings and the calculus of variations, Ergodic Theory Dynam. Systems 6 (1986), no. 3, 401–413. MR 863203, DOI 10.1017/S0143385700003588
- Xifeng Su and Philippe Thieullen, Convergence of discrete Aubry-Mather model in the continuous limit, Nonlinearity 31 (2018), no. 5, 2126–2155. MR 3816667, DOI 10.1088/1361-6544/aaacbb
- Maxime Zavidovique, Existence of $C^{1,1}$ critical subsolutions in discrete weak KAM theory, J. Mod. Dyn. 4 (2010), no. 4, 693–714. MR 2753949, DOI 10.3934/jmd.2010.4.693
- Maxime Zavidovique, Strict sub-solutions and Mañé potential in discrete weak KAM theory, Comment. Math. Helv. 87 (2012), no. 1, 1–39. MR 2874895, DOI 10.4171/CMH/247
- Jianlu Zhang, Global behaviors of weak KAM solutions for exact symplectic twist maps, J. Differential Equations 269 (2020), no. 7, 5730–5753. MR 4104940, DOI 10.1016/j.jde.2020.04.017
Bibliographic Information
- Marie-Claude Arnaud
- Affiliation: Université de Paris Cité, Sorbonne Université, CNRS, Institut de Mathématiques de Jussieu-Paris Rive Gauche, F-75013 Paris, France
- MR Author ID: 260093
- Email: marie-claude.arnaud@math.univ-paris-diderot.fr
- Maxime Zavidovique
- Affiliation: Sorbonne Université, Université de Paris Cité, CNRS, Institut de Mathématiques de Jussieu-Paris Rive Gauche, F-75005 Paris, France
- MR Author ID: 895797
- Email: maxime.zavidovique@upmc.fr
- Received by editor(s): September 26, 2022
- Received by editor(s) in revised form: May 22, 2023
- Published electronically: September 1, 2023
- Additional Notes: The first author is a member of the Institut universitaire de France.
Both authors were supported by ANR CoSyDy (ANR-CE40-0014). The second author was supported by PEPS of CNRS - © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 8129-8171
- MSC (2020): Primary 37E40, 37J30, 37J35
- DOI: https://doi.org/10.1090/tran/9017
- MathSciNet review: 4657229