Dynamics of Ostrowski skew-product: 1. Limit laws and Hausdorff dimensions
HTML articles powered by AMS MathViewer
- by Valérie Berthé and Jungwon Lee;
- Trans. Amer. Math. Soc. 376 (2023), 7947-7982
- DOI: https://doi.org/10.1090/tran/9022
- Published electronically: September 1, 2023
- HTML | PDF | Request permission
Abstract:
We present a dynamical study of Ostrowski’s map based on the use of transfer operators. The Ostrowski dynamical system is obtained as a skew-product of the Gauss map (it has the Gauss map as a base and intervals as fibers) and produces expansions of real numbers with respect to an irrational base given by continued fractions. By studying spectral properties of the associated transfer operators, we show that the absolutely continuous invariant measure of the Ostrowski dynamical system has exponential mixing properties. We deduce a central limit theorem for random variables of an arithmetic nature, and motivated by applications in inhomogeneous Diophantine approximation, we also get Bowen–Ruelle type implicit estimates in terms of spectral elements for the Hausdorff dimension of a bounded digit set.References
- P. Arnoux and A. M. Fisher, The scenery flow for geometric structures on the torus: the linear setting, Chinese Ann. Math. Ser. B 22 (2001), no. 4, 427–470. MR 1870070, DOI 10.1142/S0252959901000425
- Artur Avila, Pascal Hubert, and Alexandra Skripchenko, On the Hausdorff dimension of the Rauzy gasket, Bull. Soc. Math. France 144 (2016), no. 3, 539–568 (English, with English and French summaries). MR 3558432, DOI 10.24033/bsmf.2722
- Viviane Baladi, Dynamical zeta functions and dynamical determinants for hyperbolic maps, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 68, Springer, Cham, 2018. A functional approach. MR 3837132, DOI 10.1007/978-3-319-77661-3
- Viviane Baladi and Brigitte Vallée, Euclidean algorithms are Gaussian, J. Number Theory 110 (2005), no. 2, 331–386. MR 2122613, DOI 10.1016/j.jnt.2004.08.008
- G. Barat and P. Liardet, Dynamical systems originated in the Ostrowski alpha-expansion, Ann. Univ. Sci. Budapest. Sect. Comput. 24 (2004), 133–184. MR 2168041
- Victor Beresnevich, Alan Haynes, and Sanju Velani, Sums of reciprocals of fractional parts and multiplicative Diophantine approximation, Mem. Amer. Math. Soc. 263 (2020), no. 1276, vii + 77. MR 4068301, DOI 10.1090/memo/1276
- Valérie Berthé, Autour du système de numération d’Ostrowski, Bull. Belg. Math. Soc. Simon Stevin 8 (2001), no. 2, 209–239 (French, with French summary). Journées Montoises d’Informatique Théorique (Marne-la-Vallée, 2000). MR 1838931
- Valérie Berthé and Laurent Imbert, Diophantine approximation, Ostrowski numeration and the double-base number system, Discrete Math. Theor. Comput. Sci. 11 (2009), no. 1, 153–172. MR 2500701
- A. Bourla, The ostrowski expansions revealed, arXiv:1605.07992, 2016.
- Rufus Bowen, Hausdorff dimension of quasicircles, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 11–25. MR 556580, DOI 10.1007/BF02684767
- Anne Broise, Fractions continues multidimensionnelles et lois stables, Bull. Soc. Math. France 124 (1996), no. 1, 97–139 (French, with English and French summaries). MR 1395008, DOI 10.24033/bsmf.2277
- Anne Broise, Transformations dilatantes de l’intervalle et théorèmes limites, Astérisque 238 (1996), 1–109 (French, with English and French summaries). Études spectrales d’opérateurs de transfert et applications. MR 1634271
- Michael Bromberg and Corinna Ulcigrai, A temporal central limit theorem for real-valued cocycles over rotations, Ann. Inst. Henri Poincaré Probab. Stat. 54 (2018), no. 4, 2304–2334 (English, with English and French summaries). MR 3865674, DOI 10.1214/17-AIHP872
- Yann Bugeaud, Stephen Harrap, Simon Kristensen, and Sanju Velani, On shrinking targets for $\Bbb Z^m$ actions on tori, Mathematika 56 (2010), no. 2, 193–202. MR 2678024, DOI 10.1112/S0025579310001130
- Yann Bugeaud, Dong Han Kim, Seonhee Lim, and MichałRams, Hausdorff dimension in inhomogeneous Diophantine approximation, Int. Math. Res. Not. IMRN 3 (2021), 2108–2133. MR 4206606, DOI 10.1093/imrn/rnz073
- Yann Bugeaud and Zhenliang Zhang, On homogeneous and inhomogeneous Diophantine approximation over the fields of formal power series, Pacific J. Math. 302 (2019), no. 2, 453–480. MR 4036738, DOI 10.2140/pjm.2019.302.453
- J. W. S. Cassels, Über $\varliminf _{x\to +\infty }x|\vartheta x+\alpha -y|$, Math. Ann. 127 (1954), 288–304 (German). MR 60546, DOI 10.1007/BF01361127
- Eda Cesaratto and Brigitte Vallée, Hausdorff dimension of real numbers with bounded digit averages, Acta Arith. 125 (2006), no. 2, 115–162. MR 2277845, DOI 10.4064/aa125-2-2
- Thomas W. Cusick, Andrew M. Rockett, and Peter Szüsz, On inhomogeneous Diophantine approximation, J. Number Theory 48 (1994), no. 3, 259–283. MR 1293862, DOI 10.1006/jnth.1994.1067
- Tushar Das, Lior Fishman, David Simmons, and Mariusz Urbański, Hausdorff dimensions of perturbations of a conformal iterated function system via thermodynamic formalism, Selecta Math. (N.S.) 29 (2023), no. 2, Paper No. 19, 56. MR 4540838, DOI 10.1007/s00029-022-00820-z
- Roger Descombes, Sur la répartition des sommets d’une ligne polygonale régulière non fermée, Ann. Sci. École Norm. Sup. (3) 73 (1956), 283–355 (French). MR 86844, DOI 10.24033/asens.1047
- Ai-Hua Fan, Ling-Min Liao, Bao-Wei Wang, and Jun Wu, On Khintchine exponents and Lyapunov exponents of continued fractions, Ergodic Theory Dynam. Systems 29 (2009), no. 1, 73–109. MR 2470627, DOI 10.1017/S0143385708000138
- C. Fougeron, Dynamical properties of simplicial systems and continued fraction algorithms, arXiv:2001.01367, 2020.
- I. J. Good, The fractional dimensional theory of continued fractions, Proc. Cambridge Philos. Soc. 37 (1941), 199–228. MR 4878, DOI 10.1017/s030500410002171x
- Rodolfo Gutiérrez-Romo and Carlos Matheus, Lower bounds on the dimension of the Rauzy gasket, Bull. Soc. Math. France 148 (2020), no. 2, 321–327 (English, with English and French summaries). MR 4124503, DOI 10.24033/bsmf.2807
- Yuko Hara and Shunji Ito, On real quadratic fields and periodic expansions, Tokyo J. Math. 12 (1989), no. 2, 357–370. MR 1030499, DOI 10.3836/tjm/1270133185
- Doug Hensley, The Hausdorff dimensions of some continued fraction Cantor sets, J. Number Theory 33 (1989), no. 2, 182–198. MR 1034198, DOI 10.1016/0022-314X(89)90005-X
- Doug Hensley, Continued fraction Cantor sets, Hausdorff dimension, and functional analysis, J. Number Theory 40 (1992), no. 3, 336–358. MR 1154044, DOI 10.1016/0022-314X(92)90006-B
- Shunji Ito, Some skew product transformations associated with continued fractions and their invariant measures, Tokyo J. Math. 9 (1986), no. 1, 115–133. MR 852977, DOI 10.3836/tjm/1270150981
- Sh. Ito and H. Nakada, Approximations of real numbers by the sequence $\{n\alpha \}$ and their metrical theory, Acta Math. Hungar. 52 (1988), no. 1-2, 91–100. MR 956144, DOI 10.1007/BF01952484
- Vojtěch Jarnik, Zur Theorie der diophantischen Approximationen, Monatsh. Math. Phys. 39 (1932), no. 1, 403–438 (German). MR 1550072, DOI 10.1007/BF01699082
- Oliver Jenkinson, Luis Felipe Gonzalez, and Mariusz Urbański, On transfer operators for continued fractions with restricted digits, Proc. London Math. Soc. (3) 86 (2003), no. 3, 755–778. MR 1974398, DOI 10.1112/S0024611502013904
- O. Jenkinson and M. Pollicott, Rigorous effective bounds on the Hausdorff dimension of continued fraction Cantor sets: a hundred decimal digits for the dimension of $E_2$, Adv. Math. 325 (2018), 87–115. MR 3742587, DOI 10.1016/j.aim.2017.11.028
- Tosio Kato, Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition. MR 1335452, DOI 10.1007/978-3-642-66282-9
- A. Khintchine, Neuer Beweis und Verallgemeinerung eines Hurwitzschen Satzes, Math. Ann. 111 (1935), no. 1, 631–637 (German). MR 1513020, DOI 10.1007/BF01472245
- Dong Han Kim, The shrinking target property of irrational rotations, Nonlinearity 20 (2007), no. 7, 1637–1643. MR 2335077, DOI 10.1088/0951-7715/20/7/006
- Dong Han Kim and Lingmin Liao, Dirichlet uniformly well-approximated numbers, Int. Math. Res. Not. IMRN 24 (2019), 7691–7732. MR 4043832, DOI 10.1093/imrn/rny015
- M. A. Krasnosel′skiĭ, Positive solutions of operator equations, P. Noordhoff Ltd., Groningen, 1964. Translated from the Russian by Richard E. Flaherty; edited by Leo F. Boron. MR 181881
- J. C. Lagarias, The quality of the Diophantine approximations found by the Jacobi-Perron algorithm and related algorithms, Monatsh. Math. 115 (1993), no. 4, 299–328. MR 1230366, DOI 10.1007/BF01667310
- Seonhee Lim, Nicolas de Saxcé, and Uri Shapira, Dimension bound for badly approximable grids, Int. Math. Res. Not. IMRN 20 (2019), 6317–6346. MR 4031240, DOI 10.1093/imrn/rnx330
- Dieter H. Mayer, Approach to equilibrium for locally expanding maps in $\textbf {R}^{k}$, Comm. Math. Phys. 95 (1984), no. 1, 1–15. MR 757051, DOI 10.1007/BF01215752
- Hermann Minkowski, Ueber die Annäherung an eine reelle Grösse durch rationale Zahlen, Math. Ann. 54 (1900), no. 1-2, 91–124 (German). MR 1511108, DOI 10.1007/BF01454200
- Marston Morse and Gustav A. Hedlund, Symbolic dynamics II. Sturmian trajectories, Amer. J. Math. 62 (1940), 1–42. MR 745, DOI 10.2307/2371431
- David Ruelle, Thermodynamic formalism, Encyclopedia of Mathematics and its Applications, vol. 5, Addison-Wesley Publishing Co., Reading, MA, 1978. The mathematical structures of classical equilibrium statistical mechanics; With a foreword by Giovanni Gallavotti and Gian-Carlo Rota. MR 511655
- O. M. Sarig, Introduction to the transfer operator method, Winter school on dynamics, Hausdorff Research Institute for Mathematics, Bonn, 2020.
- Vera T. Sós, On the theory of Diophantine approximations. II. Inhomogeneous problems, Acta Math. Acad. Sci. Hungar. 9 (1958), 229–241. MR 95164, DOI 10.1007/BF02023874
- William A. Veech, Interval exchange transformations, J. Analyse Math. 33 (1978), 222–272. MR 516048, DOI 10.1007/BF02790174
Bibliographic Information
- Valérie Berthé
- Affiliation: Université de Paris, CNRS, IRIF, F-75006 Paris, France
- ORCID: 0000-0001-5561-7882
- Email: berthe@irif.fr
- Jungwon Lee
- Affiliation: LPSM, CNRS, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
- Address at time of publication: Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
- MR Author ID: 1315168
- Email: jungwon@lpsm.paris, jungwon.lee@warwick.ac.uk
- Received by editor(s): May 27, 2022
- Received by editor(s) in revised form: December 10, 2022, and April 26, 2023
- Published electronically: September 1, 2023
- Additional Notes: This work was supported by the Agence Nationale de la Recherche through the project CODYS (ANR-18-CE40-0007).
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 7947-7982
- MSC (2020): Primary 11K60, 37C30
- DOI: https://doi.org/10.1090/tran/9022
- MathSciNet review: 4657225
Dedicated: Dedicated to Jörg Thuswaldner on the occasion of his $50^{th}$ birthday