Weighted Minkowski’s existence theorem and projection bodies
HTML articles powered by AMS MathViewer
- by Liudmyla Kryvonos and Dylan Langharst;
- Trans. Amer. Math. Soc. 376 (2023), 8447-8493
- DOI: https://doi.org/10.1090/tran/8992
- Published electronically: September 14, 2023
- HTML | PDF | Request permission
Abstract:
The Brunn-Minkowski Theory has seen several generalizations over the past century. Many of the core ideas have been generalized to measures. With the goal of framing these generalizations as a weighted Brunn-Minkowski theory, we prove the Minkowski existence theorem for a large class of Borel measures with continuous density, denoted by $\Lambda ^n$: for $\nu$ a finite, even Borel measure on the unit sphere and even $\mu \in \Lambda ^n$, there exists a symmetric convex body $K$ such that \begin{equation*} d\nu (u)=c_{\mu ,K}dS^{\mu }_{K}(u), \end{equation*} where $c_{\mu ,K}$ is a quantity that depends on $\mu$ and $K$ and $dS^{\mu }_{K}(u)$ is the surface area-measure of $K$ with respect to $\mu$. Examples of measures in $\Lambda ^n$ are homogeneous measures (with $c_{\mu ,K}=1$) and probability measures with radially decreasing densities (e.g. the Gaussian measure). We will also consider weighted projection bodies $\Pi _\mu K$ by classifying them and studying the isomorphic Shephard problem: if $\mu$ and $\nu$ are even, homogeneous measures with density and $K$ and $L$ are symmetric convex bodies such that $\Pi _{\mu } K \subset \Pi _{\nu } L$, then can one find an optimal quantity $\mathcal {A}>0$ such that $\mu (K)\leq \mathcal {A}\nu (L)$? Among other things, we show that, in the case where $\mu =\nu$ and $L$ is a projection body, $\mathcal {A}=1$.References
- Aleksandr Danilovich Aleksandrov, Zur Theorie der gemischten Volumina von konvexen körper, III: Die Erweiterung zweier Lehrsätze Minkowskis über die konvexen Polyeder auf beliebige konvexe flächen (Russian), Mat. Sb. 3 (1938), 27–46.
- Shiri Artstein-Avidan, Apostolos Giannopoulos, and Vitali D. Milman, Asymptotic geometric analysis. Part I, Mathematical Surveys and Monographs, vol. 202, American Mathematical Society, Providence, RI, 2015. MR 3331351, DOI 10.1090/surv/202
- Keith Ball, Some remarks on the geometry of convex sets, Geometric aspects of functional analysis (1986/87), Lecture Notes in Math., vol. 1317, Springer, Berlin, 1988, pp. 224–231. MR 950983, DOI 10.1007/BFb0081743
- Keith Ball, Shadows of convex bodies, Trans. Amer. Math. Soc. 327 (1991), no. 2, 891–901. MR 1035998, DOI 10.1090/S0002-9947-1991-1035998-3
- Keith Ball, The reverse isoperimetric problem for Gaussian measure, Discrete Comput. Geom. 10 (1993), no. 4, 411–420. MR 1243336, DOI 10.1007/BF02573986
- C. Borell, Convex set functions in $d$-space, Period. Math. Hungar. 6 (1975), no. 2, 111–136. MR 404559, DOI 10.1007/BF02018814
- Christer Borell, The Ehrhard inequality, C. R. Math. Acad. Sci. Paris 337 (2003), no. 10, 663–666 (English, with English and French summaries). MR 2030108, DOI 10.1016/j.crma.2003.09.031
- Károly J. Böröczky, Erwin Lutwak, Deane Yang, and Gaoyong Zhang, The log-Brunn-Minkowski inequality, Adv. Math. 231 (2012), no. 3-4, 1974–1997. MR 2964630, DOI 10.1016/j.aim.2012.07.015
- Károly J. Böröczky, Erwin Lutwak, Deane Yang, and Gaoyong Zhang, The logarithmic Minkowski problem, J. Amer. Math. Soc. 26 (2013), no. 3, 831–852. MR 3037788, DOI 10.1090/S0894-0347-2012-00741-3
- J. Bourgain, On the Busemann-Petty problem for perturbations of the ball, Geom. Funct. Anal. 1 (1991), no. 1, 1–13. MR 1091609, DOI 10.1007/BF01895416
- Herm Jan Brascamp and Elliott H. Lieb, On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation, J. Functional Analysis 22 (1976), no. 4, 366–389. MR 450480, DOI 10.1016/0022-1236(76)90004-5
- H. Busemann and C. M. Petty, Problems on convex bodies, Math. Scand. 4 (1956), 88–94. MR 84791, DOI 10.7146/math.scand.a-10457
- Luis A. Caffarelli, David Jerison, and Elliott H. Lieb, On the case of equality in the Brunn-Minkowski inequality for capacity, Adv. Math. 117 (1996), no. 2, 193–207. MR 1371649, DOI 10.1006/aima.1996.0008
- Kai-Seng Chou and Xu-Jia Wang, The $L_p$-Minkowski problem and the Minkowski problem in centroaffine geometry, Adv. Math. 205 (2006), no. 1, 33–83. MR 2254308, DOI 10.1016/j.aim.2005.07.004
- Tobias H. Colding and William P. Minicozzi II, Generic mean curvature flow I: generic singularities, Ann. of Math. (2) 175 (2012), no. 2, 755–833. MR 2993752, DOI 10.4007/annals.2012.175.2.7
- A. Colesanti, K. Nyström, P. Salani, J. Xiao, D. Yang, and G. Zhang, The Hadamard variational formula and the Minkowski problem for $p$-capacity, Adv. Math. 285 (2015), 1511–1588. MR 3406534, DOI 10.1016/j.aim.2015.06.022
- Andrea Colesanti, Galyna V. Livshyts, and Arnaud Marsiglietti, On the stability of Brunn-Minkowski type inequalities, J. Funct. Anal. 273 (2017), no. 3, 1120–1139. MR 3653949, DOI 10.1016/j.jfa.2017.04.008
- Andrea Colesanti and Paolo Salani, The Brunn-Minkowski inequality for $p$-capacity of convex bodies, Math. Ann. 327 (2003), no. 3, 459–479. MR 2021025, DOI 10.1007/s00208-003-0460-7
- Serge Dubuc, Critères de convexité et inégalités intégrales, Ann. Inst. Fourier (Grenoble) 27 (1977), no. 1, x, 135–165 (French, with English summary). MR 444863, DOI 10.5802/aif.645
- Antoine Ehrhard, Symétrisation dans l’espace de Gauss, Math. Scand. 53 (1983), no. 2, 281–301 (French). MR 745081, DOI 10.7146/math.scand.a-12035
- Antoine Ehrhard, Éléments extrémaux pour les inégalités de Brunn-Minkowski gaussiennes, Ann. Inst. H. Poincaré Probab. Statist. 22 (1986), no. 2, 149–168 (French, with English summary). MR 850753
- Alexandros Eskenazis and Georgios Moschidis, The dimensional Brunn-Minkowski inequality in Gauss space, J. Funct. Anal. 280 (2021), no. 6, Paper No. 108914, 19. MR 4193767, DOI 10.1016/j.jfa.2020.108914
- Lawrence C. Evans, Partial differential equations, 2nd ed., Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 2010. MR 2597943, DOI 10.1090/gsm/019
- Lawrence C. Evans and Ronald F. Gariepy, Measure theory and fine properties of functions, Revised edition, Textbooks in Mathematics, CRC Press, Boca Raton, FL, 2015. MR 3409135
- Wm. J. Firey, $p$-means of convex bodies, Math. Scand. 10 (1962), 17–24. MR 141003, DOI 10.7146/math.scand.a-10510
- M. Fradelizi, D. Langharst, M. Madiman, and A. Zvavitch, Weighted Brunn-Minkowski theory I: on weighted surface area measures, Preprint, 2023.
- M. Fradelizi, D. Langharst, M. Madiman, and A. Zvavitch, Weighted Brunn-Minkowski theory II: on inequalities for mixed measures, Preprint, 2023.
- R. J. Gardner, Intersection bodies and the Busemann-Petty problem, Trans. Amer. Math. Soc. 342 (1994), no. 1, 435–445. MR 1201126, DOI 10.1090/S0002-9947-1994-1201126-7
- R. J. Gardner, A. Koldobsky, and T. Schlumprecht, An analytic solution to the Busemann-Petty problem on sections of convex bodies, Ann. of Math. (2) 149 (1999), no. 2, 691–703. MR 1689343, DOI 10.2307/120978
- Richard J. Gardner, Geometric tomography, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 58, Cambridge University Press, New York, 2006. MR 2251886, DOI 10.1017/CBO9781107341029
- Richard J. Gardner, Alexander Koldobsky, and Thomas Schlumprecht, An analytic solution to the Busemann-Petty problem, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), no. 1, 29–34 (English, with English and French summaries). MR 1674441, DOI 10.1016/S0764-4442(99)80007-X
- Richard J. Gardner and Artem Zvavitch, Gaussian Brunn-Minkowski inequalities, Trans. Amer. Math. Soc. 362 (2010), no. 10, 5333–5353. MR 2657682, DOI 10.1090/S0002-9947-2010-04891-3
- Apostolos A. Giannopoulos, A note on a problem of H. Busemann and C. M. Petty concerning sections of symmetric convex bodies, Mathematika 37 (1990), no. 2, 239–244. MR 1099772, DOI 10.1112/S002557930001295X
- H. Groemer, Geometric applications of Fourier series and spherical harmonics, Encyclopedia of Mathematics and its Applications, vol. 61, Cambridge University Press, Cambridge, 1996. MR 1412143, DOI 10.1017/CBO9780511530005
- Christoph Haberl, Erwin Lutwak, Deane Yang, and Gaoyong Zhang, The even Orlicz Minkowski problem, Adv. Math. 224 (2010), no. 6, 2485–2510. MR 2652213, DOI 10.1016/j.aim.2010.02.006
- Christoph Haberl and Franz E. Schuster, Asymmetric affine $L_p$ Sobolev inequalities, J. Funct. Anal. 257 (2009), no. 3, 641–658. MR 2530600, DOI 10.1016/j.jfa.2009.04.009
- Christoph Haberl and Franz E. Schuster, General $L_p$ affine isoperimetric inequalities, J. Differential Geom. 83 (2009), no. 1, 1–26. MR 2545028
- Johannes Hosle, On the comparison of measures of convex bodies via projections and sections, Int. Math. Res. Not. IMRN 17 (2021), 13046–13074. MR 4307682, DOI 10.1093/imrn/rnz215
- Johannes Hosle, Alexander V. Kolesnikov, and Galyna V. Livshyts, On the $L_p$-Brunn-Minkowski and dimensional Brunn-Minkowski conjectures for log-concave measures, J. Geom. Anal. 31 (2021), no. 6, 5799–5836. MR 4267627, DOI 10.1007/s12220-020-00505-z
- Yong Huang, Erwin Lutwak, Deane Yang, and Gaoyong Zhang, Geometric measures in the dual Brunn-Minkowski theory and their associated Minkowski problems, Acta Math. 216 (2016), no. 2, 325–388. MR 3573332, DOI 10.1007/s11511-016-0140-6
- Yong Huang, Dongmeng Xi, and Yiming Zhao, The Minkowski problem in Gaussian probability space, Adv. Math. 385 (2021), Paper No. 107769, 36. MR 4252759, DOI 10.1016/j.aim.2021.107769
- David Jerison, The direct method in the calculus of variations for convex bodies, Adv. Math. 122 (1996), no. 2, 262–279. MR 1409423, DOI 10.1006/aima.1996.0062
- Bo’az Klartag and Alexander Koldobsky, An example related to the slicing inequality for general measures, J. Funct. Anal. 274 (2018), no. 7, 2089–2112. MR 3762096, DOI 10.1016/j.jfa.2017.08.025
- Bo’az Klartag and Galyna V. Livshyts, The lower bound for Koldobsky’s slicing inequality via random rounding, Geometric aspects of functional analysis. Vol. II, Lecture Notes in Math., vol. 2266, Springer, Cham, [2020] ©2020, pp. 43–63. MR 4175757, DOI 10.1007/978-3-030-46762-3_{2}
- Alexander Koldobsky, Fourier analysis in convex geometry, Mathematical Surveys and Monographs, vol. 116, American Mathematical Society, Providence, RI, 2005. MR 2132704, DOI 10.1090/surv/116
- Alexander Koldobsky, A hyperplane inequality for measures of convex bodies in $\Bbb R^n$, $n\leq 4$, Discrete Comput. Geom. 47 (2012), no. 3, 538–547. MR 2891246, DOI 10.1007/s00454-011-9362-8
- Alexander Koldobsky, A $\sqrt {n}$ estimate for measures of hyperplane sections of convex bodies, Adv. Math. 254 (2014), 33–40. MR 3161089, DOI 10.1016/j.aim.2013.12.029
- Alexander Koldobsky, Slicing inequalities for measures of convex bodies, Adv. Math. 283 (2015), 473–488. MR 3383809, DOI 10.1016/j.aim.2015.07.019
- Alexander Koldobsky, Grigoris Paouris, and Artem Zvavitch, Measure comparison and distance inequalities for convex bodies, Indiana Univ. Math. J. 71 (2022), no. 1, 391–407. MR 4395601, DOI 10.1512/iumj.2022.71.8838
- A. Koldobsky, D. Ryabogin, and Artem Zvavitch, Fourier analytic methods in the study of projections and sections of convex bodies, Fourier analysis and convexity, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, MA, 2004, pp. 119–130. MR 2087241
- Alexander Koldobsky, Dmitry Ryabogin, and Artem Zvavitch, Projections of convex bodies and the Fourier transform, Israel J. Math. 139 (2004), 361–380. MR 2041799, DOI 10.1007/BF02787557
- Alexander Koldobsky and Vladyslav Yaskin, The interface between convex geometry and harmonic analysis, CBMS Regional Conference Series in Mathematics, vol. 108, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2008. MR 2365157
- Alexander Koldobsky and Artem Zvavitch, An isomorphic version of the Busemann-Petty problem for arbitrary measures, Geom. Dedicata 174 (2015), 261–277. MR 3303052, DOI 10.1007/s10711-014-0016-x
- Alexander V. Kolesnikov and Galyna V. Livshyts, On the Gardner-Zvavitch conjecture: symmetry in inequalities of Brunn-Minkowski type, Adv. Math. 384 (2021), Paper No. 107689, 23. MR 4238914, DOI 10.1016/j.aim.2021.107689
- Alexander V. Kolesnikov and Emanuel Milman, Poincaré and Brunn-Minkowski inequalities on the boundary of weighted Riemannian manifolds, Amer. J. Math. 140 (2018), no. 5, 1147–1185. MR 3862061, DOI 10.1353/ajm.2018.0027
- Dylan Langharst, Michael Roysdon, and Artem Zvavitch, General measure extensions of projection bodies, Proc. Lond. Math. Soc. (3) 125 (2022), no. 5, 1083–1129. MR 4508339, DOI 10.1112/plms.12477
- D. G. Larman and C. A. Rogers, The existence of a centrally symmetric convex body with central sections that are unexpectedly small, Mathematika 22 (1975), no. 2, 164–175. MR 390914, DOI 10.1112/S0025579300006033
- RafałLatała, A note on the Ehrhard inequality, Studia Math. 118 (1996), no. 2, 169–174. MR 1389763, DOI 10.4064/sm-118-2-169-174
- D. R. Lewis, Finite dimensional subspaces of $L_{p}$, Studia Math. 63 (1978), no. 2, 207–212. MR 511305, DOI 10.4064/sm-63-2-207-212
- Jiaqian Liu, The $L_p$-Gaussian Minkowski problem, Calc. Var. Partial Differential Equations 61 (2022), no. 1, Paper No. 28, 23. MR 4358235, DOI 10.1007/s00526-021-02141-z
- Galyna V. Livshyts, An extension of Minkowski’s theorem and its applications to questions about projections for measures, Adv. Math. 356 (2019), 106803, 40. MR 4008520, DOI 10.1016/j.aim.2019.106803
- Monika Ludwig, Minkowski valuations, Trans. Amer. Math. Soc. 357 (2005), no. 10, 4191–4213. MR 2159706, DOI 10.1090/S0002-9947-04-03666-9
- Erwin Lutwak, Intersection bodies and dual mixed volumes, Adv. in Math. 71 (1988), no. 2, 232–261. MR 963487, DOI 10.1016/0001-8708(88)90077-1
- Erwin Lutwak, The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem, J. Differential Geom. 38 (1993), no. 1, 131–150. MR 1231704
- Erwin Lutwak, The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas, Adv. Math. 118 (1996), no. 2, 244–294. MR 1378681, DOI 10.1006/aima.1996.0022
- Erwin Lutwak, Deane Yang, and Gaoyong Zhang, $L_p$ affine isoperimetric inequalities, J. Differential Geom. 56 (2000), no. 1, 111–132. MR 1863023
- Erwin Lutwak, Deane Yang, and Gaoyong Zhang, Optimal Sobolev norms and the $L^p$ Minkowski problem, Int. Math. Res. Not. , posted on (2006), Art. ID 62987, 21. MR 2211138, DOI 10.1155/IMRN/2006/62987
- Erwin Lutwak, Deane Yang, and Gaoyong Zhang, Orlicz centroid bodies, J. Differential Geom. 84 (2010), no. 2, 365–387. MR 2652465
- Erwin Lutwak, Deane Yang, and Gaoyong Zhang, Orlicz projection bodies, Adv. Math. 223 (2010), no. 1, 220–242. MR 2563216, DOI 10.1016/j.aim.2009.08.002
- Matthew McGonagle and John Ross, The hyperplane is the only stable, smooth solution to the isoperimetric problem in Gaussian space, Geom. Dedicata 178 (2015), 277–296. MR 3397495, DOI 10.1007/s10711-015-0057-9
- Emanuel Milman and Liran Rotem, Complemented Brunn-Minkowski inequalities and isoperimetry for homogeneous and non-homogeneous measures, Adv. Math. 262 (2014), 867–908. MR 3228444, DOI 10.1016/j.aim.2014.05.023
- Piotr Nayar and Tomasz Tkocz, A note on a Brunn-Minkowski inequality for the Gaussian measure, Proc. Amer. Math. Soc. 141 (2013), no. 11, 4027–4030. MR 3091793, DOI 10.1090/S0002-9939-2013-11609-6
- Fedor Nazarov, On the maximal perimeter of a convex set in ${\Bbb R}^n$ with respect to a Gaussian measure, Geometric aspects of functional analysis, Lecture Notes in Math., vol. 1807, Springer, Berlin, 2003, pp. 169–187. MR 2083397, DOI 10.1007/978-3-540-36428-3_{1}5
- Michael Papadimitrakis, On the Busemann-Petty problem about convex, centrally symmetric bodies in $\mathbf R^n$, Mathematika 39 (1992), no. 2, 258–266. MR 1203282, DOI 10.1112/S0025579300014996
- C. M. Petty, Projection bodies, Proc. Colloquium on Convexity (Copenhagen, 1965) Kobenhavns Universitets Matematiske Institut, Copenhagen, 1967, pp. 234–241. MR 216369
- C. M. Petty, Isoperimetric problems, Proceedings of the Conference on Convexity and Combinatorial Geometry (Univ. Oklahoma, Norman, Okla., 1971) University of Oklahoma, Department of Mathematics, Norman, OK, 1971, pp. 26–41. MR 362057
- C. A. Rogers and G. C. Shephard, The difference body of a convex body, Arch. Math. (Basel) 8 (1957), 220–233. MR 92172, DOI 10.1007/BF01899997
- Michael Roysdon, Rogers-Shephard type inequalities for sections, J. Math. Anal. Appl. 487 (2020), no. 1, 123958, 22. MR 4070397, DOI 10.1016/j.jmaa.2020.123958
- Michael Roysdon and Sudan Xing, On $L_p$-Brunn-Minkowski type and $L_p$-isoperimetric type inequalities for measures, Trans. Amer. Math. Soc. 374 (2021), no. 7, 5003–5036. MR 4273183, DOI 10.1090/tran/8356
- Christos Saroglou, Ivan Soprunov, and Artem Zvavitch, Wulff shapes and a characterization of simplices via a Bezout type inequality, Adv. Math. 357 (2019), 106789, 24. MR 4017405, DOI 10.1016/j.aim.2019.106789
- Gideon Schechtman and Artem Zvavitch, Embedding subspaces of $L_p$ into $l^N_p$, $0<p<1$, Math. Nachr. 227 (2001), 133–142. MR 1840560, DOI 10.1002/1522-2616(200107)227:1<133::AID-MANA133>3.3.CO;2-
- Rolf Schneider, Zur einem Problem von Shephard über die Projektionen konvexer Körper, Math. Z. 101 (1967), 71–82 (German). MR 218976, DOI 10.1007/BF01135693
- Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Second expanded edition, Encyclopedia of Mathematics and its Applications, vol. 151, Cambridge University Press, Cambridge, 2014. MR 3155183
- G. C. Shephard, Shadow systems of convex sets, Israel J. Math. 2 (1964), 229–236. MR 179686, DOI 10.1007/BF02759738
- Denghui Wu, A generalization of $L_p$-Brunn-Minkowski inequalities and $L_p$-Minkowski problems for measures, Adv. in Appl. Math. 89 (2017), 156–183. MR 3655736, DOI 10.1016/j.aam.2017.05.001
- Gao Yong Zhang, Intersection bodies and the four-dimensional Busemann-Petty problem, Internat. Math. Res. Notices 7 (1993), 233–240. MR 1230300, DOI 10.1155/S107379289300025X
- Gao Yong Zhang, Intersection bodies and the Busemann-Petty inequalities in $\textbf {R}^4$, Ann. of Math. (2) 140 (1994), no. 2, 331–346. MR 1298716, DOI 10.2307/2118603
- Gao Yong Zhang, Restricted chord projection and affine inequalities, Geom. Dedicata 39 (1991), no. 2, 213–222. MR 1119653, DOI 10.1007/BF00182294
- A. Zvavitch, The Busemann-Petty problem for arbitrary measures, Math. Ann. 331 (2005), no. 4, 867–887. MR 2148800, DOI 10.1007/s00208-004-0611-5
- A. Zvavitch, Gaussian measure of sections of dilates and translations of convex bodies, Adv. in Appl. Math. 41 (2008), no. 2, 247–254. MR 2424631, DOI 10.1016/j.aam.2007.03.003
Bibliographic Information
- Liudmyla Kryvonos
- Affiliation: Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37240
- MR Author ID: 1459671
- ORCID: 0009-0003-6738-6614
- Email: liudmyla.kryvonos@Vanderbilt.Edu
- Dylan Langharst
- Affiliation: Department of Mathematical Sciences, Kent State University, Kent, Ohio 44242
- MR Author ID: 1531407
- ORCID: 0000-0002-4767-3371
- Email: dlanghar@kent.edu
- Received by editor(s): January 3, 2022
- Received by editor(s) in revised form: May 8, 2023
- Published electronically: September 14, 2023
- Additional Notes: The second named author was supported in part by the U.S. National Science Foundation Grant DMS-2000304 and the United States - Israel Binational Science Foundation (BSF)
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 8447-8493
- MSC (2020): Primary 52A39, 52A40; Secondary 52A21, 49J10
- DOI: https://doi.org/10.1090/tran/8992
- MathSciNet review: 4669302