Ideal approach to convergence in functional spaces
HTML articles powered by AMS MathViewer
- by Serhii Bardyla, Jaroslav Šupina and Lyubomyr Zdomskyy;
- Trans. Amer. Math. Soc. 376 (2023), 8495-8528
- DOI: https://doi.org/10.1090/tran/9008
- Published electronically: September 12, 2023
- HTML | PDF | Request permission
Abstract:
We solve the last standing open problem from the seminal paper by J. Gerlits and Zs. Nagy [Topology Appl. 14 (1982), pp. 151–161], which was later reposed by A. Miller, T. Orenshtein, and B. Tsaban. Namely, we show that under $\mathfrak {p}=\mathfrak {c}$ there is a $\delta$-set that is not a $\gamma$-set. Thus we constructed a subset $A$ of reals such that the space $\mathrm {C}_p(A)$ of all real-valued continuous functions on $A$ is not Fréchet–Urysohn, but possesses the Pytkeev property. Moreover, under $\mathbf {CH}$ we construct a $\pi$-set that is not a $\delta$-set solving a problem by M. Sakai. In fact, we construct various examples of $\delta$-sets that are not $\gamma$-sets, satisfying finer properties parametrized by ideals on natural numbers. Finally, we distinguish ideal variants of the Fréchet–Urysohn property for many different Borel ideals in the realm of functional spaces.References
- A. V. Arhangel′skiĭ, Some topological spaces that arise in functional analysis, Uspehi Mat. Nauk 31 (1976), no. 5(191), 17–32 (Russian). MR 458366
- A. V. Arkhangel′skiĭ, Topological function spaces, Mathematics and its Applications (Soviet Series), vol. 78, Kluwer Academic Publishers Group, Dordrecht, 1992. Translated from the Russian by R. A. M. Hoksbergen. MR 1144519, DOI 10.1007/978-94-011-2598-7
- Karen Bakke Haga, David Schrittesser, and Asger Törnquist, Maximal almost disjoint families, determinacy, and forcing, J. Math. Log. 22 (2022), no. 1, Paper No. 2150026, 42. MR 4439581, DOI 10.1142/S0219061321500264
- Tomek Bartoszyński and Boaz Tsaban, Hereditary topological diagonalizations and the Menger-Hurewicz conjectures, Proc. Amer. Math. Soc. 134 (2006), no. 2, 605–615. MR 2176030, DOI 10.1090/S0002-9939-05-07997-9
- PawełBarbarski, RafałFilipów, Nikodem Mrożek, and Piotr Szuca, When does the Katětov order imply that one ideal extends the other?, Colloq. Math. 130 (2013), no. 1, 91–102. MR 3034318, DOI 10.4064/cm130-1-9
- Andreas Blass, Combinatorial cardinal characteristics of the continuum, Handbook of set theory. Vols. 1, 2, 3, Springer, Dordrecht, 2010, pp. 395–489. MR 2768685, DOI 10.1007/978-1-4020-5764-9_{7}
- Piotr Borodulin-Nadzieja and Barnabás Farkas, Cardinal coefficients associated to certain orders on ideals, Arch. Math. Logic 51 (2012), no. 1-2, 187–202. MR 2864404, DOI 10.1007/s00153-011-0260-9
- Jörg Brendle and Jana Flašková, Generic existence of ultrafilters on the natural numbers, Fund. Math. 236 (2017), no. 3, 201–245. MR 3600759, DOI 10.4064/fm730-5-2016
- Jörg Brendle, Barnabás Farkas, and Jonathan Verner, Towers in filters, cardinal invariants, and Luzin type families, J. Symb. Log. 83 (2018), no. 3, 1013–1062. MR 3868039, DOI 10.1017/jsl.2017.52
- Lev Bukovský, The structure of the real line, Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series) [Mathematics Institute of the Polish Academy of Sciences. Mathematical Monographs (New Series)], vol. 71, Birkhäuser/Springer Basel AG, Basel, 2011. MR 2778559, DOI 10.1007/978-3-0348-0006-8
- Lev Bukovský, Selection principle $\rm S_1$ and combinatorics of open covers, Topology Appl. 258 (2019), 239–250. MR 3924516, DOI 10.1016/j.topol.2019.02.054
- Lev Bukovský, Pratulananda Das, and Jaroslav Šupina, Ideal quasi-normal convergence and related notions, Colloq. Math. 146 (2017), no. 2, 265–281. MR 3622377, DOI 10.4064/cm6520-3-2016
- Pratulananda Das, Certain types of open covers and selection principles using ideals, Houston J. Math. 39 (2013), no. 2, 637–650. MR 3080458
- Gabriel Debs and Jean Saint Raymond, Filter descriptive classes of Borel functions, Fund. Math. 204 (2009), no. 3, 189–213. MR 2520152, DOI 10.4064/fm204-3-1
- Natasha Dobrinen, High dimensional Ellentuck spaces and initial chains in the Tukey structure of non-p-points, J. Symb. Log. 81 (2016), no. 1, 237–263. MR 3471138, DOI 10.1017/jsl.2015.10
- R. M. Dudley, On sequential convergence, Trans. Amer. Math. Soc. 112 (1964), 483–507. MR 175081, DOI 10.1090/S0002-9947-1964-0175081-6
- Ilijas Farah, Analytic quotients: theory of liftings for quotients over analytic ideals on the integers, Mem. Amer. Math. Soc. 148 (2000), no. 702, xvi+177. MR 1711328, DOI 10.1090/memo/0702
- Barnabás Farkas and Lajos Soukup, More on cardinal invariants of analytic $P$-ideals, Comment. Math. Univ. Carolin. 50 (2009), no. 2, 281–295. MR 2537837
- RafałFilipów and Piotr Szuca, Three kinds of convergence and the associated $\scr I$-Baire classes, J. Math. Anal. Appl. 391 (2012), no. 1, 1–9. MR 2899832, DOI 10.1016/j.jmaa.2012.02.041
- S. P. Franklin, Spaces in which sequences suffice, Fund. Math. 57 (1965), 107–115. MR 180954, DOI 10.4064/fm-57-1-107-115
- Fred Galvin and Arnold W. Miller, $\gamma$-sets and other singular sets of real numbers, Topology Appl. 17 (1984), no. 2, 145–155. MR 738943, DOI 10.1016/0166-8641(84)90038-5
- J. Gerlits and Zs. Nagy, Some properties of $C(X)$. I, Topology Appl. 14 (1982), no. 2, 151–161. MR 667661, DOI 10.1016/0166-8641(82)90065-7
- Gerhard Grimeisen, Ein Approximationssatz für Bairesche Funktionen, Math. Ann. 146 (1962), 189–194 (German). MR 148810, DOI 10.1007/BF01470961
- Michael Hrušák, Combinatorics of filters and ideals, Set theory and its applications, Contemp. Math., vol. 533, Amer. Math. Soc., Providence, RI, 2011, pp. 29–69. MR 2777744, DOI 10.1090/conm/533/10503
- Michael Hrušák, Katětov order on Borel ideals, Arch. Math. Logic 56 (2017), no. 7-8, 831–847. MR 3696069, DOI 10.1007/s00153-017-0543-x
- Michael Hrušák, David Meza-Alcántara, and Hiroaki Minami, Pair-splitting, pair-reaping and cardinal invariants of $F_\sigma$-ideals, J. Symbolic Logic 75 (2010), no. 2, 661–677. MR 2648159, DOI 10.2178/jsl/1268917498
- W. Hurewicz, Über Folgen stetiger Funktionen, Fund. Math. 9 (1927), 193–204.
- S. Jackson, A. S. Kechris, and A. Louveau, Countable Borel equivalence relations, J. Math. Log. 2 (2002), no. 1, 1–80. MR 1900547, DOI 10.1142/S0219061302000138
- Winfried Just and Adam Krawczyk, On certain Boolean algebras ${\scr P}(\omega )/I$, Trans. Amer. Math. Soc. 285 (1984), no. 1, 411–429. MR 748847, DOI 10.1090/S0002-9947-1984-0748847-1
- Winfried Just, Arnold W. Miller, Marion Scheepers, and Paul J. Szeptycki, The combinatorics of open covers. II, Topology Appl. 73 (1996), no. 3, 241–266. MR 1419798, DOI 10.1016/S0166-8641(96)00075-2
- Miroslav Katětov, Products of filters, Comment. Math. Univ. Carolinae 9 (1968), 173–189. MR 250257
- M. Katětov, On descriptive classification of functions, General Topology and its Relations to Modern Analysis and Algebra, Proceedings of the Third Prague Topological Symposium, Prague, 1972, 235–242.
- Ljubiša D. R. Kočinac and Marion Scheepers, Combinatorics of open covers. VII. Groupability, Fund. Math. 179 (2003), no. 2, 131–155. MR 2029229, DOI 10.4064/fm179-2-2
- Adam Kwela and Ireneusz Recław, Ranks of $\scr {F}$-limits of filter sequences, J. Math. Anal. Appl. 398 (2013), no. 2, 872–878. MR 2990109, DOI 10.1016/j.jmaa.2012.09.052
- Adam Kwela and Marcin Staniszewski, Ideal equal Baire classes, J. Math. Anal. Appl. 451 (2017), no. 2, 1133–1153. MR 3624783, DOI 10.1016/j.jmaa.2016.11.062
- V. I. Malykhin and G. Tironi, Weakly Fréchet-Urysohn and Pytkeev spaces, Proceedings of the French-Japanese Conference “Hyperspace Topologies and Applications” (La Bussière, 1997), 2000, pp. 181–190. MR 1780904, DOI 10.1016/S0166-8641(99)00027-9
- A. Miller, On $\gamma$-sets, Plenary lecture, Second Workshop on Coverings, Selections, and Games in Topology, Lecce, Italy, 19–22 Dec 2005, Lecture notes, http://u.cs.biu.ac.il/~tsaban/SPMC05/Miller.pdf.
- Arnold W. Miller, Boaz Tsaban, and Lyubomyr Zdomskyy, Selective covering properties of product spaces, II: $\gamma$ spaces, Trans. Amer. Math. Soc. 368 (2016), no. 4, 2865–2889. MR 3449260, DOI 10.1090/tran/6581
- Tal Orenshtein and Boaz Tsaban, Linear $\sigma$-additivity and some applications, Trans. Amer. Math. Soc. 363 (2011), no. 7, 3621–3637. MR 2775821, DOI 10.1090/S0002-9947-2011-05228-1
- Tal Orenshtein and Boaz Tsaban, Pointwise convergence of partial functions: the Gerlits-Nagy problem, Adv. Math. 232 (2013), 311–326. MR 2989985, DOI 10.1016/j.aim.2012.09.017
- Alexander V. Osipov, Classification of selectors for sequences of dense sets of $C_p(X)$, Topology Appl. 242 (2018), 20–32. MR 3802170, DOI 10.1016/j.topol.2018.04.010
- E. G. Pytkeev, Tightness of spaces of continuous functions, Uspekhi Mat. Nauk 37 (1982), no. 1(223), 157–158 (Russian). MR 643782
- E. G. Pytkeev, Sequentiality of spaces of continuous functions, Uspekhi Mat. Nauk 37 (1982), no. 5(227), 197–198 (Russian). MR 676634
- E. G. Pytkeev, On maximally resolvable spaces, Proc. Steklov Inst. Math. 154 (1984), 225–230.
- Dilip Raghavan and Juris Steprāns, The almost disjointness invariant for products of ideals, Topology Appl. 323 (2023), Paper No. 108295, 11. MR 4518092, DOI 10.1016/j.topol.2022.108295
- Ireneusz Recław, Every Lusin set is undetermined in the point-open game, Fund. Math. 144 (1994), no. 1, 43–54. MR 1271477, DOI 10.4064/fm-144-1-43-54
- Miroslav Repický, Spaces not distinguishing ideal convergences of real-valued functions, Real Anal. Exchange 46 (2021), no. 2, 367–394. MR 4336563, DOI 10.14321/realanalexch.46.2.0367
- Miroslav Repický, Spaces not distinguishing ideal convergences of real-valued functions, II, Real Anal. Exchange 46 (2021), no. 2, 395–421. MR 4336564, DOI 10.14321/realanalexch.46.2.0395
- Masami Sakai, The Pytkeev property and the Reznichenko property in function spaces, Note Mat. 22 (2003/04), no. 2, 43–52. MR 2112730
- Masami Sakai, Special subsets of reals characterizing local properties of function spaces, Selection principles and covering properties in topology, Quad. Mat., vol. 18, Dept. Math., Seconda Univ. Napoli, Caserta, 2006, pp. 195–225. MR 2395755
- Marion Scheepers, Combinatorics of open covers. I. Ramsey theory, Topology Appl. 69 (1996), no. 1, 31–62. MR 1378387, DOI 10.1016/0166-8641(95)00067-4
- Petr Simon and Boaz Tsaban, On the Pytkeev property in spaces of continuous functions, Proc. Amer. Math. Soc. 136 (2008), no. 3, 1125–1135. MR 2361889, DOI 10.1090/S0002-9939-07-09070-3
- Viera Šottová and Jaroslav Šupina, Principle $\textrm {S}_1(\mathcal {P},\mathcal {R})$: ideals and functions, Topology Appl. 258 (2019), 282–304. MR 3924519, DOI 10.1016/j.topol.2019.02.060
- Jaroslav Šupina, Ideal QN-spaces, J. Math. Anal. Appl. 435 (2016), no. 1, 477–491. MR 3423409, DOI 10.1016/j.jmaa.2015.10.041
- Jaroslav Šupina, Pseudointersection numbers, ideal slaloms, topological spaces, and cardinal inequalities, Arch. Math. Logic 62 (2023), no. 1-2, 87–112. MR 4535928, DOI 10.1007/s00153-022-00832-8
- Piotr Szewczak and Boaz Tsaban, Products of general Menger spaces, Topology Appl. 255 (2019), 41–55. MR 3902779, DOI 10.1016/j.topol.2019.01.005
- Boaz Tsaban, Menger’s and Hurewicz’s problems: solutions from “the book” and refinements, Set theory and its applications, Contemp. Math., vol. 533, Amer. Math. Soc., Providence, RI, 2011, pp. 211–226. MR 2777750, DOI 10.1090/conm/533/10509
- Boaz Tsaban and Tomasz Weiss, Products of special sets of real numbers, Real Anal. Exchange 30 (2004/05), no. 2, 819–835. MR 2177439, DOI 10.14321/realanalexch.30.2.0819
- Boaz Tsaban and Lyubomyr Zdomskyy, Scales, fields, and a problem of Hurewicz, J. Eur. Math. Soc. (JEMS) 10 (2008), no. 3, 837–866. MR 2421163, DOI 10.4171/JEMS/132
- Boaz Tsaban and Lyubomyr Zdomskyy, On the Pytkeev property in spaces of continuous functions. II, Houston J. Math. 35 (2009), no. 2, 563–571. MR 2519548
Bibliographic Information
- Serhii Bardyla
- Affiliation: Universität Wien, Institut für Mathematik, Kurt Gödel Research Center, Kolingasse 14-16, 1090 Vienna, Austria
- Address at time of publication: Institute of Mathematics, P.J. Šafárik University in Košice, Jesenná 5, 040 01 Košice, Slovakia
- MR Author ID: 1014430
- ORCID: 0000-0003-2266-2024
- Email: sbardyla@yahoo.com
- Jaroslav Šupina
- Affiliation: Institute of Mathematics, P.J. Šafárik University in Košice, Jesenná 5, 040 01 Košice, Slovakia
- Address at time of publication: Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien, Wiedner Hauptstraße 8-10, 1040 Wien, Austria
- ORCID: 0000-0002-0652-0627
- Email: jaroslav.supina@upjs.sk
- Lyubomyr Zdomskyy
- Affiliation: Universität Wien, Institut für Mathematik, Kurt Gödel Research Center, Kolingasse 14-16, 1090 Vienna, Austria
- MR Author ID: 742789
- Email: lzdomsky@gmail.com
- Received by editor(s): November 11, 2021
- Received by editor(s) in revised form: December 16, 2022, and May 9, 2023
- Published electronically: September 12, 2023
- Additional Notes: The first named author was supported by the Austrian Science Fund FWF (Grant M 2967) and the Slovak Research and Development Agency under the Contract no. APVV-21-0468.
The second author would like to thank the Austrian Agency for International Cooperation in Education and Research (OeAD-GmbH) for the scholarship ICM-2020-00442 in the frame of Aktion Österreich-Slowakei, AÖSK-Stipendien für Postdoktoranden. This work was supported by the Slovak Research and Development Agency under the Contracts no. APVV-16-0337, APVV-20-0045.
The third author was supported by the Austrian Science Fund FWF (Grants I 2374, I 3709, and I 5930). - © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 8495-8528
- MSC (2020): Primary 40A35, 54G15, 26A03
- DOI: https://doi.org/10.1090/tran/9008
- MathSciNet review: 4669303