On forms in prime variables
HTML articles powered by AMS MathViewer
- by Jianya Liu and Lilu Zhao;
- Trans. Amer. Math. Soc. 376 (2023), 8621-8656
- DOI: https://doi.org/10.1090/tran/9009
- Published electronically: August 22, 2023
- HTML | PDF | Request permission
Abstract:
Let $F_1$, …, $F_R$ be homogeneous polynomials of degree $d\geqslant 2$ with integer coefficients in $n$ variables, and let $\mathbf {F}=(F_1,\ldots ,F_R)$. Suppose that $F_1$, …, $F_R$ is a non-singular system and $n\geqslant 4^{d+2}d^2R^5$. We prove that there are infinitely many solutions to $\mathbf {F}(\mathbf {x})=\mathbf {0}$ in prime coordinates if (i) $\mathbf {F}(\mathbf {x})=\mathbf {0}$ has a non-singular solution over the $p$-adic units $\mathbb {U}_p$ for all prime numbers $p$, and (ii) $\mathbf {F}(\mathbf {x})=\mathbf {0}$ has a non-singular solution in the open cube $(0,1)^n$.References
- B. J. Birch, Forms in many variables, Proc. Roy. Soc. London Ser. A 265 (1961/62), 245–263. MR 150129, DOI 10.1098/rspa.1962.0007
- Jean Bourgain, Ciprian Demeter, and Larry Guth, Proof of the main conjecture in Vinogradov’s mean value theorem for degrees higher than three, Ann. of Math. (2) 184 (2016), no. 2, 633–682. MR 3548534, DOI 10.4007/annals.2016.184.2.7
- Jean Bourgain, Alex Gamburd, and Peter Sarnak, Affine linear sieve, expanders, and sum-product, Invent. Math. 179 (2010), no. 3, 559–644. MR 2587341, DOI 10.1007/s00222-009-0225-3
- Tim Browning and Roger Heath-Brown, Forms in many variables and differing degrees, J. Eur. Math. Soc. (JEMS) 19 (2017), no. 2, 357–394. MR 3605019, DOI 10.4171/JEMS/668
- T. D. Browning and S. M. Prendiville, Improvements in Birch’s theorem on forms in many variables, J. Reine Angew. Math. 731 (2017), 203–234. MR 3709065, DOI 10.1515/crelle-2014-0122
- T. D. Browning and P. Vishe, Cubic hypersurfaces and a version of the circle method for number fields, Duke Math. J. 163 (2014), no. 10, 1825–1883. MR 3229043, DOI 10.1215/00127094-2738530
- J. Brüdern, R. Dietmann, J. Y. Liu, and T. D. Wooley, A Birch-Goldbach theorem, Arch. Math. (Basel) 94 (2010), no. 1, 53–58. MR 2581334, DOI 10.1007/s00013-009-0086-4
- Brian Cook and Ákos Magyar, Diophantine equations in the primes, Invent. Math. 198 (2014), no. 3, 701–737. MR 3279535, DOI 10.1007/s00222-014-0508-1
- H. Davenport, Cubic forms in thirty-two variables, Philos. Trans. Roy. Soc. London Ser. A 251 (1959), 193–232. MR 105394, DOI 10.1098/rsta.1959.0002
- Ben Green and Terence Tao, The primes contain arbitrarily long arithmetic progressions, Ann. of Math. (2) 167 (2008), no. 2, 481–547. MR 2415379, DOI 10.4007/annals.2008.167.481
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 463157, DOI 10.1007/978-1-4757-3849-0
- D. R. Heath-Brown, Cubic forms in ten variables, Proc. London Math. Soc. (3) 47 (1983), no. 2, 225–257. MR 703978, DOI 10.1112/plms/s3-47.2.225
- D. R. Heath-Brown, Cubic forms in 14 variables, Invent. Math. 170 (2007), no. 1, 199–230. MR 2336082, DOI 10.1007/s00222-007-0062-1
- Koichi Kawada and Trevor D. Wooley, On the Waring-Goldbach problem for fourth and fifth powers, Proc. London Math. Soc. (3) 83 (2001), no. 1, 1–50. MR 1829558, DOI 10.1112/S0024611500012636
- Jianya Liu and Peter Sarnak, Integral points on quadrics in three variables whose coordinates have few prime factors, Israel J. Math. 178 (2010), 393–426. MR 2733075, DOI 10.1007/s11856-010-0069-y
- James Maynard, Small gaps between primes, Ann. of Math. (2) 181 (2015), no. 1, 383–413. MR 3272929, DOI 10.4007/annals.2015.181.1.7
- Simon L. Rydin Myerson, Quadratic forms and systems of forms in many variables, Invent. Math. 213 (2018), no. 1, 205–235. MR 3815565, DOI 10.1007/s00222-018-0789-x
- Wolfgang M. Schmidt, The density of integer points on homogeneous varieties, Acta Math. 154 (1985), no. 3-4, 243–296. MR 781588, DOI 10.1007/BF02392473
- Christopher M. Skinner, Rational points on nonsingular cubic hypersurfaces, Duke Math. J. 75 (1994), no. 2, 409–466. MR 1290198, DOI 10.1215/S0012-7094-94-07512-1
- C. M. Skinner, Forms over number fields and weak approximation, Compositio Math. 106 (1997), no. 1, 11–29. MR 1446148, DOI 10.1023/A:1000129818730
- R. C. Vaughan, The Hardy-Littlewood method, Cambridge Tracts in Mathematics, vol. 80, Cambridge University Press, Cambridge-New York, 1981. MR 628618
- Trevor D. Wooley, Vinogradov’s mean value theorem via efficient congruencing, Ann. of Math. (2) 175 (2012), no. 3, 1575–1627. MR 2912712, DOI 10.4007/annals.2012.175.3.12
- Trevor D. Wooley, Nested efficient congruencing and relatives of Vinogradov’s mean value theorem, Proc. Lond. Math. Soc. (3) 118 (2019), no. 4, 942–1016. MR 3938716, DOI 10.1112/plms.12204
- Shuntaro Yamagishi, Diophantine equations in semiprimes, Discrete Anal. , posted on (2019), Paper No. 17, 21. MR 4042160, DOI 10.19086/da
- Shuntaro Yamagishi, Diophantine equations in primes: density of prime points on affine hypersurfaces, Duke Math. J. 171 (2022), no. 4, 831–884. MR 4393374, DOI 10.1215/00127094-2021-0023
- Yitang Zhang, Bounded gaps between primes, Ann. of Math. (2) 179 (2014), no. 3, 1121–1174. MR 3171761, DOI 10.4007/annals.2014.179.3.7
- Lilu Zhao, On the Waring-Goldbach problem for fourth and sixth powers, Proc. Lond. Math. Soc. (3) 108 (2014), no. 6, 1593–1622. MR 3218320, DOI 10.1112/plms/pdt072
Bibliographic Information
- Jianya Liu
- Affiliation: School of Mathematics and Data Science Institute, Shandong University, Jinan 250100, People’s Republic of China
- MR Author ID: 346386
- Email: jyliu@sdu.edu.cn
- Lilu Zhao
- Affiliation: School of Mathematics, Shandong University, Jinan 250100, People’s Republic of China
- Email: zhaolilu@sdu.edu.cn
- Received by editor(s): June 9, 2022
- Received by editor(s) in revised form: June 14, 2023
- Published electronically: August 22, 2023
- Additional Notes: This work was supported by the NKRDPC (No. 2021YFA1000700) and the NSFC grants (12031008 and 11922113).
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 8621-8656
- MSC (2020): Primary 11P55; Secondary 11P32, 11D45, 11D72
- DOI: https://doi.org/10.1090/tran/9009
- MathSciNet review: 4669306