Polynomiality of the faithful dimension for nilpotent groups over finite truncated valuation rings
HTML articles powered by AMS MathViewer
- by Mohammad Bardestani, Keivan Mallahi-Karai, Dzmitry Rumiantsau and Hadi Salmasian;
- Trans. Amer. Math. Soc. 376 (2023), 8795-8823
- DOI: https://doi.org/10.1090/tran/9032
- Published electronically: September 12, 2023
- HTML | PDF | Request permission
Abstract:
Given a finite group $\mathrm {G}$, the faithful dimension of $\mathrm {G}$ over $\mathbb {C}$, denoted by $m_\mathrm {faithful}(\mathrm {G})$, is the smallest integer $n$ such that $\mathrm {G}$ can be embedded in $\mathrm {GL}_n(\mathbb {C})$. Continuing the work initiated by Bardestani et al. [Compos. Math. 155 (2019), pp. 1618–1654], we address the problem of determining the faithful dimension of a finite $p$-group of the form $\mathscr {G}_R≔\exp (\mathfrak {g}_R)$ associated to $\mathfrak {g}_R≔\mathfrak {g}\otimes _\mathbb {Z}R$ in the Lazard correspondence, where $\mathfrak {g}$ is a nilpotent $\mathbb {Z}$-Lie algebra and $R$ ranges over finite truncated valuation rings.
Our first main result is that if $R$ is a finite field with $p^f$ elements and $p$ is sufficiently large, then $m_\mathrm {faithful}(\mathscr {G}_R)=fg(p^f)$ where $g(T)$ belongs to a finite list of polynomials $g_1,\ldots ,g_k$, with non-negative integer coefficients. The latter list of polynomials is uniquely determined by the Lie algebra $\mathfrak {g}$. Furthermore, for each $1\le i\leq k$ the set of pairs $(p,f)$ for which $g=g_i$ is a finite union of Cartesian products $\mathscr P\times \mathscr F$, where $\mathscr P$ is a Frobenius set of prime numbers and $\mathscr F$ is a subset of $\mathbb N$ that belongs to the Boolean algebra generated by arithmetic progressions. Previously, existence of such a polynomial-type formula for $m_\mathrm {faithful}(\mathscr {G}_R)$ was only established under the assumption that either $f=1$ or $p$ is fixed.
Next we formulate a conjectural polynomiality property for the value of $m_\mathrm {faithful}(\mathscr {G}_R)$ in the more general setting where $R$ is a finite truncated valuation ring, and prove special cases of this conjecture. In particular, we show that for a vast class of Lie algebras $\mathfrak {g}$ that are defined by partial orders, $m_\mathrm {faithful}(\mathscr {G}_R)$ is given by a single polynomial-type formula.
Finally, we compute $m_\mathrm {faithful}(\mathscr {G}_R)$ precisely in the case where $\mathfrak {g}$ is the free metabelian nilpotent Lie algebra of class $c$ on $n$ generators and $R$ is a finite truncated valuation ring.
References
- Menny Aka, Emmanuel Breuillard, Lior Rosenzweig, and Nicolas de Saxcé, Diophantine approximation on matrices and Lie groups, Geom. Funct. Anal. 28 (2018), no. 1, 1–57. MR 3777412, DOI 10.1007/s00039-018-0436-0
- James Ax and Simon Kochen, Diophantine problems over local fields. I, Amer. J. Math. 87 (1965), 605–630. MR 184930, DOI 10.2307/2373065
- Nir Avni, Benjamin Klopsch, Uri Onn, and Christopher Voll, Representation zeta functions of compact $p$-adic analytic groups and arithmetic groups, Duke Math. J. 162 (2013), no. 1, 111–197. MR 3011874, DOI 10.1215/00127094-1959198
- James Ax, Solving diophantine problems modulo every prime, Ann. of Math. (2) 85 (1967), 161–183. MR 209224, DOI 10.2307/1970438
- James Ax, The elementary theory of finite fields, Ann. of Math. (2) 88 (1968), 239–271. MR 229613, DOI 10.2307/1970573
- Grégory Berhuy and Giordano Favi, Essential dimension: a functorial point of view (after A. Merkurjev), Doc. Math. 8 (2003), 279–330. MR 2029168, DOI 10.4171/dm/145
- Mohammad Bardestani, Keivan Mallahi-Karai, and Hadi Salmasian, Minimal dimension of faithful representations for $p$-groups, J. Group Theory 19 (2016), no. 4, 589–608. MR 3518394, DOI 10.1515/jgth-2016-0003
- Mohammad Bardestani, Keivan Mallahi-Karai, and Hadi Salmasian, Kirillov’s orbit method and polynomiality of the faithful dimension of $p$-groups, Compos. Math. 155 (2019), no. 8, 1618–1654. MR 4043356, DOI 10.1112/S0010437X19007462
- J. Buhler and Z. Reichstein, On the essential dimension of a finite group, Compositio Math. 106 (1997), no. 2, 159–179. MR 1457337, DOI 10.1023/A:1000144403695
- Mitya Boyarchenko and Maria Sabitova, The orbit method for profinite groups and a $p$-adic analogue of Brown’s theorem, Israel J. Math. 165 (2008), 67–91. MR 2403615, DOI 10.1007/s11856-008-1004-3
- P. Deligne, Les corps locaux de caractéristique $p$, limites de corps locaux de caractéristique $0$, Representations of reductive groups over a local field, Travaux en Cours, Hermann, Paris, 1984, pp. 119–157 (French). MR 771673
- Newcomb Greenleaf, Irreducible subvarieties and rational points, Amer. J. Math. 87 (1965), 25–31. MR 182625, DOI 10.2307/2373222
- Marvin J. Greenberg, Strictly local solutions of Diophantine equations, Pacific J. Math. 51 (1974), 143–153. MR 351994, DOI 10.2140/pjm.1974.51.143
- Fritz Grunewald and Dan Segal, Reflections on the classification of torsion-free nilpotent groups, Group theory, Academic Press, London, 1984, pp. 121–158. MR 780569
- Roger E. Howe, Kirillov theory for compact $p$-adic groups, Pacific J. Math. 73 (1977), no. 2, 365–381. MR 579176, DOI 10.2140/pjm.1977.73.365
- Nathan Jacobson, Basic algebra. I, 2nd ed., W. H. Freeman and Company, New York, 1985. MR 780184
- D. Kazhdan, Proof of Springer’s hypothesis, Israel J. Math. 28 (1977), no. 4, 272–286. MR 486181, DOI 10.1007/BF02760635
- E. I. Khukhro, $p$-automorphisms of finite $p$-groups, London Mathematical Society Lecture Note Series, vol. 246, Cambridge University Press, Cambridge, 1998. MR 1615819, DOI 10.1017/CBO9780511526008
- Nikita A. Karpenko and Alexander S. Merkurjev, Essential dimension of finite $p$-groups, Invent. Math. 172 (2008), no. 3, 491–508. MR 2393078, DOI 10.1007/s00222-007-0106-6
- Martin Kneser, Konstruktive Lösung $p$-adischer Gleichungssysteme, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 5 (1978), 67–69 (German). MR 523328
- J. C. Lagarias, Sets of primes determined by systems of polynomial congruences, Illinois J. Math. 27 (1983), no. 2, 224–239. MR 694641, DOI 10.1215/ijm/1256046492
- Daniel A. Marcus, Number fields, Universitext, Springer, Cham, 2018. Second edition of [ MR0457396]; With a foreword by Barry Mazur. MR 3822326, DOI 10.1007/978-3-319-90233-3
- K. R. McLean, Commutative artinian principal ideal rings, Proc. London Math. Soc. (3) 26 (1973), 249–272. MR 319981, DOI 10.1112/plms/s3-26.2.249
- Alexander S. Merkurjev, Essential dimension, Bull. Amer. Math. Soc. (N.S.) 54 (2017), no. 4, 635–661. MR 3683628, DOI 10.1090/bull/1564
- Aurel Meyer and Zinovy Reichstein, Some consequences of the Karpenko-Merkurjev theorem, Doc. Math. Extra vol.: Andrei A. Suslin sixtieth birthday (2010), 445–457. MR 2804261
- E. A. O’Brien and C. Voll, Enumerating classes and characters of $p$-groups, Trans. Amer. Math. Soc. 367 (2015), no. 11, 7775–7796. MR 3391899, DOI 10.1090/tran/6276
- A. Stasinski and C. Voll, Representation zeta functions of nilpotent groups and generating functions for Weyl groups of type $B$, Amer. J. Math. 136 (2014), no. 2, 501–550. MR 3188068, DOI 10.1353/ajm.2014.0010
- Elena Tielker, Topics in the representation theory of finite p-groups, Masters Thesis, University of Bielefeld, 2018.
- Lou van den Dries, A remark on Ax’s theorem on solvability modulo primes, Math. Z. 208 (1991), no. 1, 65–70. MR 1125733, DOI 10.1007/BF02571510
- Christopher Voll, Zeta functions of groups and enumeration in Bruhat-Tits buildings, Amer. J. Math. 126 (2004), no. 5, 1005–1032. MR 2089080, DOI 10.1353/ajm.2004.0041
- C. Voll, Functional equations for local normal zeta functions of nilpotent groups, Geom. Funct. Anal. 15 (2005), no. 1, 274–295. With an appendix by A. Beauville. MR 2140633, DOI 10.1007/s00039-005-0506-y
Bibliographic Information
- Mohammad Bardestani
- Affiliation: John Abbott College, 21 275 Rue Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3L9, Canada
- MR Author ID: 1090955
- Email: mohammad.bardestani@gmail.com
- Keivan Mallahi-Karai
- Affiliation: Constructor University, Campus Ring I, Bremen 28759 Germany
- MR Author ID: 688546
- ORCID: 0000-0002-0291-790X
- Email: kmallahikarai@constructor.university
- Dzmitry Rumiantsau
- Affiliation: Constructor University, Campus Ring I, Bremen 28759 Germany
- MR Author ID: 1403932
- ORCID: 0000-0002-2936-3249
- Email: drumiantsau@constructor.university
- Hadi Salmasian
- Affiliation: Department of Mathematics, University of Ottawa, STEM Complex, 150 Louis- Pasteur Pvt, Ottawa, Ontario K1N 6N5, Canada
- MR Author ID: 659045
- ORCID: 0000-0002-1073-7183
- Email: hadi.salmasian@uottawa.ca
- Received by editor(s): October 9, 2022
- Received by editor(s) in revised form: March 24, 2023, April 24, 2023, and July 4, 2023
- Published electronically: September 12, 2023
- Additional Notes: The research of the fourth author was partially supported by an NSERC Discovery Grant (RGPIN-2018-04044).
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 8795-8823
- MSC (2020): Primary 20G05; Secondary 20C15, 14G05
- DOI: https://doi.org/10.1090/tran/9032
- MathSciNet review: 4669311