Self-improving properties of very weak solutions to double phase systems
HTML articles powered by AMS MathViewer
- by Sumiya Baasandorj, Sun-Sig Byun and Wontae Kim;
- Trans. Amer. Math. Soc. 376 (2023), 8733-8768
- DOI: https://doi.org/10.1090/tran/9039
- Published electronically: September 29, 2023
- HTML | PDF | Request permission
Abstract:
We prove the self-improving property of very weak solutions to non-uniformly elliptic problems of double phase type in divergence form under sharp assumptions on the nonlinearity.References
- Emilio Acerbi and Nicola Fusco, Semicontinuity problems in the calculus of variations, Arch. Rational Mech. Anal. 86 (1984), no. 2, 125–145. MR 751305, DOI 10.1007/BF00275731
- Emilio Acerbi and Nicola Fusco, An approximation lemma for $W^{1,p}$ functions, Material instabilities in continuum mechanics (Edinburgh, 1985–1986) Oxford Sci. Publ., Oxford Univ. Press, New York, 1988, pp. 1–5. MR 970512
- Karthik Adimurthi and Sun-Sig Byun, Boundary higher integrability for very weak solutions of quasilinear parabolic equations, J. Math. Pures Appl. (9) 121 (2019), 244–285. MR 3906171, DOI 10.1016/j.matpur.2018.06.005
- Karthik Adimurthi and Nguyen Cong Phuc, Global Lorentz and Lorentz-Morrey estimates below the natural exponent for quasilinear equations, Calc. Var. Partial Differential Equations 54 (2015), no. 3, 3107–3139. MR 3412404, DOI 10.1007/s00526-015-0895-1
- Karthik Adimurthi and Nguyen Cong Phuc, An end-point global gradient weighted estimate for quasilinear equations in non-smooth domains, Manuscripta Math. 150 (2016), no. 1-2, 111–135. MR 3483172, DOI 10.1007/s00229-015-0804-0
- Paolo Baroni, Maria Colombo, and Giuseppe Mingione, Harnack inequalities for double phase functionals, Nonlinear Anal. 121 (2015), 206–222. MR 3348922, DOI 10.1016/j.na.2014.11.001
- Paolo Baroni, Maria Colombo, and Giuseppe Mingione, Regularity for general functionals with double phase, Calc. Var. Partial Differential Equations 57 (2018), no. 2, Paper No. 62, 48. MR 3775180, DOI 10.1007/s00526-018-1332-z
- Verena Bögelein, Very weak solutions of higher-order degenerate parabolic systems, Adv. Differential Equations 14 (2009), no. 1-2, 121–200. MR 2478931
- Verena Bögelein and Frank Duzaar, Higher integrability for parabolic systems with non-standard growth and degenerate diffusions, Publ. Mat. 55 (2011), no. 1, 201–250. MR 2779582, DOI 10.5565/PUBLMAT_{5}5111_{1}0
- Verena Bögelein and Anna Zatorska-Goldstein, Higher integrability of very weak solutions of systems of $p(x)$-Laplacean type, J. Math. Anal. Appl. 336 (2007), no. 1, 480–497. MR 2348520, DOI 10.1016/j.jmaa.2007.02.019
- Miroslav Bulíček, Jan Burczak, and Sebastian Schwarzacher, Well posedness of nonlinear parabolic systems beyond duality, Ann. Inst. H. Poincaré C Anal. Non Linéaire 36 (2019), no. 5, 1467–1500. MR 3985550, DOI 10.1016/j.anihpc.2019.01.004
- Miroslav Bulíček, Lars Diening, and Sebastian Schwarzacher, Existence, uniqueness and optimal regularity results for very weak solutions to nonlinear elliptic systems, Anal. PDE 9 (2016), no. 5, 1115–1151. MR 3531368, DOI 10.2140/apde.2016.9.1115
- Miroslav Bulíček and Sebastian Schwarzacher, Existence of very weak solutions to elliptic systems of $p$-Laplacian type, Calc. Var. Partial Differential Equations 55 (2016), no. 3, Art. 52, 14. MR 3500290, DOI 10.1007/s00526-016-0986-7
- Sun-Sig Byun and Minkyu Lim, Gradient estimates of very weak solutions to general quasilinear elliptic equations, J. Funct. Anal. 283 (2022), no. 10, Paper No. 109668, 32. MR 4467204, DOI 10.1016/j.jfa.2022.109668
- Maria Colombo and Giuseppe Mingione, Bounded minimisers of double phase variational integrals, Arch. Ration. Mech. Anal. 218 (2015), no. 1, 219–273. MR 3360738, DOI 10.1007/s00205-015-0859-9
- Maria Colombo and Giuseppe Mingione, Regularity for double phase variational problems, Arch. Ration. Mech. Anal. 215 (2015), no. 2, 443–496. MR 3294408, DOI 10.1007/s00205-014-0785-2
- Maria Colombo and Giuseppe Mingione, Calderón-Zygmund estimates and non-uniformly elliptic operators, J. Funct. Anal. 270 (2016), no. 4, 1416–1478. MR 3447716, DOI 10.1016/j.jfa.2015.06.022
- Maria Colombo and Riccardo Tione, Non-classical solutions of the $p$-Laplace equation, arXiv, 2022.
- C. De Filippis and G. Mingione, A borderline case of Calderón-Zygmund estimates for nonuniformly elliptic problems, Algebra i Analiz 31 (2019), no. 3, 82–115; English transl., St. Petersburg Math. J. 31 (2020), no. 3, 455–477. MR 3985927, DOI 10.1090/spmj/1608
- Emmanuele DiBenedetto, Degenerate parabolic equations, Universitext, Springer-Verlag, New York, 1993. MR 1230384, DOI 10.1007/978-1-4612-0895-2
- L. Diening, S. Schwarzacher, B. Stroffolini, and A. Verde, Parabolic Lipschitz truncation and caloric approximation, Calc. Var. Partial Differential Equations 56 (2017), no. 4, Paper No. 120, 27. MR 3672391, DOI 10.1007/s00526-017-1209-6
- Luca Esposito, Francesco Leonetti, and Giuseppe Mingione, Regularity for minimizers of functionals with $p$-$q$ growth, NoDEA Nonlinear Differential Equations Appl. 6 (1999), no. 2, 133–148. MR 1694803, DOI 10.1007/s000300050069
- Luca Esposito, Francesco Leonetti, and Giuseppe Mingione, Regularity results for minimizers of irregular integrals with $(p,q)$ growth, Forum Math. 14 (2002), no. 2, 245–272. MR 1880913, DOI 10.1515/form.2002.011
- Luca Esposito, Francesco Leonetti, and Giuseppe Mingione, Sharp regularity for functionals with $(p,q)$ growth, J. Differential Equations 204 (2004), no. 1, 5–55. MR 2076158, DOI 10.1016/j.jde.2003.11.007
- F. W. Gehring, The $L^{p}$-integrability of the partial derivatives of a quasiconformal mapping, Acta Math. 130 (1973), 265–277. MR 402038, DOI 10.1007/BF02392268
- Enrico Giusti, Direct methods in the calculus of variations, World Scientific Publishing Co., Inc., River Edge, NJ, 2003. MR 1962933, DOI 10.1142/9789812795557
- Loukas Grafakos, Classical Fourier analysis, 3rd ed., Graduate Texts in Mathematics, vol. 249, Springer, New York, 2014. MR 3243734, DOI 10.1007/978-1-4939-1194-3
- T. Iwaniec and C. Sbordone, Weak minima of variational integrals, J. Reine Angew. Math. 454 (1994), 143–161. MR 1288682, DOI 10.1515/crll.1994.454.143
- Juha Kinnunen, Juha Lehrbäck, and Antti Vähäkangas, Maximal function methods for Sobolev spaces, Mathematical Surveys and Monographs, vol. 257, American Mathematical Society, Providence, RI, [2021] ©2021. MR 4306765, DOI 10.1090/surv/257
- Juha Kinnunen and John L. Lewis, Higher integrability for parabolic systems of $p$-Laplacian type, Duke Math. J. 102 (2000), no. 2, 253–271. MR 1749438, DOI 10.1215/S0012-7094-00-10223-2
- Juha Kinnunen and John L. Lewis, Very weak solutions of parabolic systems of $p$-Laplacian type, Ark. Mat. 40 (2002), no. 1, 105–132. MR 1948889, DOI 10.1007/BF02384505
- John L. Lewis, On very weak solutions of certain elliptic systems, Comm. Partial Differential Equations 18 (1993), no. 9-10, 1515–1537. MR 1239922, DOI 10.1080/03605309308820984
- Jan Malý and William P. Ziemer, Fine regularity of solutions of elliptic partial differential equations, Mathematical Surveys and Monographs, vol. 51, American Mathematical Society, Providence, RI, 1997. MR 1461542, DOI 10.1090/surv/051
- Paolo Marcellini, Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions, Arch. Rational Mech. Anal. 105 (1989), no. 3, 267–284. MR 969900, DOI 10.1007/BF00251503
- Paolo Marcellini, Regularity and existence of solutions of elliptic equations with $p,q$-growth conditions, J. Differential Equations 90 (1991), no. 1, 1–30. MR 1094446, DOI 10.1016/0022-0396(91)90158-6
- Norman G. Meyers and Alan Elcrat, Some results on regularity for solutions of non-linear elliptic systems and quasi-regular functions, Duke Math. J. 42 (1975), 121–136. MR 417568
- Claudiu Mîndrilă and Sebastian Schwarzacher, Existence of steady very weak solutions to Navier-Stokes equations with non-Newtonian stress tensors, J. Differential Equations 279 (2021), 10–45. MR 4205178, DOI 10.1016/j.jde.2020.12.038
- V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), no. 4, 675–710, 877 (Russian). MR 864171
- V. V. Jikov, S. M. Kozlov, and O. A. Oleĭnik, Homogenization of differential operators and integral functionals, Springer-Verlag, Berlin, 1994. Translated from the Russian by G. A. Yosifian [G. A. Iosif′yan]. MR 1329546, DOI 10.1007/978-3-642-84659-5
Bibliographic Information
- Sumiya Baasandorj
- Affiliation: Department of Mathematical Sciences, Seoul National University, Seoul 08826, South Korea
- MR Author ID: 1381082
- ORCID: 0000-0003-4152-5092
- Email: summa2017@snu.ac.kr
- Sun-Sig Byun
- Affiliation: Department of Mathematical Sciences, Seoul National University, Seoul 08826, South Korea; and Research Institute of Mathematics, Seoul National University, Seoul 08826, South Korea
- MR Author ID: 738383
- Email: byun@snu.ac.kr
- Wontae Kim
- Affiliation: Department of Mathematics, Aalto University, P.O. Box 11100, 00076 Aalto, Finland
- MR Author ID: 1407532
- Email: wontae.kim@aalto.fi
- Received by editor(s): September 19, 2022
- Received by editor(s) in revised form: June 29, 2023
- Published electronically: September 29, 2023
- Additional Notes: The first and third authors were supported by the National Research Foundation of Korea NRF-2021R1A4A1027378. The second author was supported by the National Research Foundation of Korea NRF-2022R1A2C1009312
The first author is the corresponding author. - © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 8733-8768
- MSC (2020): Primary 35D30, 35J60, 35J70
- DOI: https://doi.org/10.1090/tran/9039
- MathSciNet review: 4669309