On global ACC for foliated threefolds
HTML articles powered by AMS MathViewer
- by Jihao Liu, Yujie Luo and Fanjun Meng;
- Trans. Amer. Math. Soc. 376 (2023), 8939-8972
- DOI: https://doi.org/10.1090/tran/9053
- Published electronically: September 28, 2023
- HTML | PDF | Request permission
Abstract:
In this paper, we prove the rational coefficient case of the global ACC for foliated threefolds. Specifically, we consider any lc foliated log Calabi-Yau triple $(X,\mathcal {F},B)$ of dimension $3$ whose coefficients belong to a set $\Gamma$ of rational numbers satisfying the descending chain condition, and prove that the coefficients of $B$ belong to a finite set depending only on $\Gamma$.
To prove our main result, we introduce the concept of generalized foliated quadruples, which is a mixture of foliated triples and Birkar-Zhang’s generalized pairs. With this concept, we establish a canonical bundle formula for foliations in any dimension.
As for applications, we extend Shokurov’s global index conjecture in the classical MMP to foliated triples and prove this conjecture for threefolds with nonzero boundaries and for surfaces. Additionally, we introduce the theory of rational polytopes for functional divisors on foliations and prove some miscellaneous results.
References
- D. Abramovich and K. Karu, Weak semistable reduction in characteristic 0, Invent. Math. 139 (2000), no. 2, 241–273. MR 1738451, DOI 10.1007/s002229900024
- Valery Alexeev, Boundedness and $K^2$ for log surfaces, Internat. J. Math. 5 (1994), no. 6, 779–810. MR 1298994, DOI 10.1142/S0129167X94000395
- F. Ambro, P. Cascini, V. V. Shokurov, and C. Spicer, Positivity of the moduli part, arXiv:2111.00423.
- K. Ascher, D. Bejleri, H. Blum, K. DeVleming, G. Inchiostro, Y. Liu, and X. Wang, Moduli of boundary polarized Calabi-Yau pairs, arXiv:2307.06522.
- Caucher Birkar, Existence of log canonical flips and a special LMMP, Publ. Math. Inst. Hautes Études Sci. 115 (2012), 325–368. MR 2929730, DOI 10.1007/s10240-012-0039-5
- Caucher Birkar, Anti-pluricanonical systems on Fano varieties, Ann. of Math. (2) 190 (2019), no. 2, 345–463. MR 3997127, DOI 10.4007/annals.2019.190.2.1
- Caucher Birkar, Paolo Cascini, Christopher D. Hacon, and James McKernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), no. 2, 405–468. MR 2601039, DOI 10.1090/S0894-0347-09-00649-3
- Caucher Birkar and De-Qi Zhang, Effectivity of Iitaka fibrations and pluricanonical systems of polarized pairs, Publ. Math. Inst. Hautes Études Sci. 123 (2016), 283–331. MR 3502099, DOI 10.1007/s10240-016-0080-x
- Sébastien Boucksom, Jean-Pierre Demailly, Mihai Păun, and Thomas Peternell, The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebraic Geom. 22 (2013), no. 2, 201–248. MR 3019449, DOI 10.1090/S1056-3911-2012-00574-8
- Marco Brunella, Birational geometry of foliations, IMPA Monographs, vol. 1, Springer, Cham, 2015. MR 3328860, DOI 10.1007/978-3-319-14310-1
- Felipe Cano, Reduction of the singularities of codimension one singular foliations in dimension three, Ann. of Math. (2) 160 (2004), no. 3, 907–1011. MR 2144971, DOI 10.4007/annals.2004.160.907
- F. Cano and J.-F. Mattei, Hypersurfaces intégrales des feuilletages holomorphes, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 1-2, 49–72 (French, with English summary). MR 1162557, DOI 10.5802/aif.1286
- P. Cascini and C. Spicer, On the MMP for rank one foliations on threefolds, arXiv:2012.11433.
- Paolo Cascini and Calum Spicer, MMP for co-rank one foliations on threefolds, Invent. Math. 225 (2021), no. 2, 603–690. MR 4285142, DOI 10.1007/s00222-021-01037-1
- Guodu Chen and Jingjun Han, Boundedness of $(\epsilon , n)$-complements for surfaces, Adv. Math. 383 (2021), Paper No. 107703, 40. MR 4236289, DOI 10.1016/j.aim.2021.107703
- Yen-An Chen, Boundedness of minimal partial du Val resolutions of canonical surface foliations, Math. Ann. 381 (2021), no. 1-2, 557–573. MR 4322620, DOI 10.1007/s00208-021-02195-6
- Yen-An Chen, Log canonical foliation singularities on surfaces, Math. Nachr. 296 (2023), no. 8, 3222–3256. MR 4626880, DOI 10.1002/mana.202100215
- Yen-An Chen, Boundedness of Canonical Models of Foliated Surfaces, ProQuest LLC, Ann Arbor, MI, 2021. Thesis (Ph.D.)–The University of Utah. MR 4511487
- Y.-A. Chen, ACC for foliated log canonical thresholds, arXiv:2202.11346.
- Frédéric Campana and Mihai Păun, Foliations with positive slopes and birational stability of orbifold cotangent bundles, Publ. Math. Inst. Hautes Études Sci. 129 (2019), 1–49. MR 3949026, DOI 10.1007/s10240-019-00105-w
- Stéphane Druel, On foliations with nef anti-canonical bundle, Trans. Amer. Math. Soc. 369 (2017), no. 11, 7765–7787. MR 3695844, DOI 10.1090/tran/6873
- Stéphane Druel, Codimension 1 foliations with numerically trivial canonical class on singular spaces, Duke Math. J. 170 (2021), no. 1, 95–203. MR 4194898, DOI 10.1215/00127094-2020-0041
- Stefano Filipazzi and Roberto Svaldi, On the connectedness principle and dual complexes for generalized pairs, Forum Math. Sigma 11 (2023), Paper No. e33, 39. MR 4580302, DOI 10.1017/fms.2023.25
- Stefano Filipazzi, Generalized Pairs in Birational Geometry, ProQuest LLC, Ann Arbor, MI, 2019. Thesis (Ph.D.)–The University of Utah. MR 4239924
- Enrica Floris, Inductive approach to effective b-semiampleness, Int. Math. Res. Not. IMRN 6 (2014), 1465–1492. MR 3180598, DOI 10.1093/imrn/rns260
- Daniel Greb, Stefan Kebekus, and Thomas Peternell, Movable curves and semistable sheaves, Int. Math. Res. Not. IMRN 2 (2016), 536–570. MR 3493425, DOI 10.1093/imrn/rnv126
- Yoshinori Gongyo, On the minimal model theory for dlt pairs of numerical log Kodaira dimension zero, Math. Res. Lett. 18 (2011), no. 5, 991–1000. MR 2875871, DOI 10.4310/MRL.2011.v18.n5.a16
- Christopher D. Hacon and Adrian Langer, On birational boundedness of foliated surfaces, J. Reine Angew. Math. 770 (2021), 205–229. MR 4193468, DOI 10.1515/crelle-2020-0009
- C. D. Hacon and J. Liu, Existence of flips for generalized lc pairs, arXiv:2105.13590.
- Christopher D. Hacon, James McKernan, and Chenyang Xu, ACC for log canonical thresholds, Ann. of Math. (2) 180 (2014), no. 2, 523–571. MR 3224718, DOI 10.4007/annals.2014.180.2.3
- J. Han, J. Liu, and V. V. Shokurov, ACC for minimal log discrepancies of exceptional singularities, arXiv:1903.04338.
- J. Han and Y. Luo, On boundedness of divisors computing minimal log discrepancies for surfaces, J. Inst. Math. Jussieu. (2022), 1–24.
- Z. Hu, Log abundance of the moduli b-divisors for lc-trivial fibrations, arXiv:2003.14379.
- Chen Jiang, A gap theorem for minimal log discrepancies of noncanonical singularities in dimension three, J. Algebraic Geom. 30 (2021), no. 4, 759–800. MR 4372404, DOI 10.1090/jag/759
- J. Jiao, J. Liu, and L. Xie, On generalized lc pairs with b-log abundant nef part, arXiv:2202.11256.
- Yujiro Kawamata, Katsumi Matsuda, and Kenji Matsuki, Introduction to the minimal model problem, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 283–360. MR 946243, DOI 10.2969/aspm/01010283
- K. Kodaira, On compact analytic surfaces. II, III, Ann. of Math. (2) 77 (1963), 563–626; 78 (1963), 1–40. MR 184257, DOI 10.2307/1970500
- J. Kollár, et al., Flip and abundance for algebraic threefolds, Astérisque 211 (1992).
- János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti; Translated from the 1998 Japanese original. MR 1658959, DOI 10.1017/CBO9780511662560
- Michael McQuillan, Canonical models of foliations, Pure Appl. Math. Q. 4 (2008), no. 3, Special Issue: In honor of Fedor Bogomolov., 877–1012. MR 2435846, DOI 10.4310/PAMQ.2008.v4.n3.a9
- Michael McQuillan and Daniel Panazzolo, Almost étale resolution of foliations, J. Differential Geom. 95 (2013), no. 2, 279–319. MR 3128985
- Yoichi Miyaoka, Deformations of a morphism along a foliation and applications, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 245–268. MR 927960, DOI 10.1090/pspum/046.1/927960
- Noboru Nakayama, Zariski-decomposition and abundance, MSJ Memoirs, vol. 14, Mathematical Society of Japan, Tokyo, 2004. MR 2104208
- Wenhao Ou, On generic nefness of tangent sheaves, Math. Z. 304 (2023), no. 4, Paper No. 58, 23. MR 4616112, DOI 10.1007/s00209-023-03306-6
- Jorge Vitório Pereira, On the height of foliated surfaces with vanishing Kodaira dimension, Publ. Mat. 49 (2005), no. 2, 363–373. MR 2177633, DOI 10.5565/PUBLMAT_{4}9205_{0}6
- Yu. G. Prokhorov and V. V. Shokurov, Towards the second main theorem on complements, J. Algebraic Geom. 18 (2009), no. 1, 151–199. MR 2448282, DOI 10.1090/S1056-3911-08-00498-0
- A. Seidenberg, Reduction of singularities of the differential equation $A\,dy=B\,dx$, Amer. J. Math. 90 (1968), 248–269. MR 220710, DOI 10.2307/2373435
- V. V. Shokurov, Prelimiting flips, Tr. Mat. Inst. Steklova 240 (2003), no. Biratsion. Geom. Lineĭn. Sist. Konechno Porozhdennye Algebry, 82–219; English transl., Proc. Steklov Inst. Math. 1(240) (2003), 75–213. MR 1993750
- Calum Spicer, Higher-dimensional foliated Mori theory, Compos. Math. 156 (2020), no. 1, 1–38. MR 4036447, DOI 10.1112/s0010437x19007681
- Calum Spicer and Roberto Svaldi, Local and global applications of the Minimal Model Program for co-rank 1 foliations on threefolds, J. Eur. Math. Soc. (JEMS) 24 (2022), no. 11, 3969–4025. MR 4493618, DOI 10.4171/jems/1173
- Calum Spicer and Roberto Svaldi, Effective generation for foliated surfaces: results and applications, J. Reine Angew. Math. 795 (2023), 45–84. MR 4542415, DOI 10.1515/crelle-2022-0067
- Kenji Ueno, Classification of algebraic varieties. I, Compositio Math. 27 (1973), 277–342. MR 360582
- Y. Xu, Some results about the index conjecture for log Calabi-Yau pairs, arXiv:1905.00297.
Bibliographic Information
- Jihao Liu
- Affiliation: Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, Illinois 60208
- MR Author ID: 1418665
- Email: jliu@northwestern.edu
- Yujie Luo
- Affiliation: Department of Mathematics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218
- MR Author ID: 1513126
- Email: yluo32@jhu.edu
- Fanjun Meng
- Affiliation: Department of Mathematics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218
- MR Author ID: 1451222
- ORCID: 0000-0003-1023-2959
- Email: fmeng3@jhu.edu
- Received by editor(s): March 23, 2023
- Received by editor(s) in revised form: June 1, 2023, and August 2, 2023
- Published electronically: September 28, 2023
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 8939-8972
- MSC (2020): Primary 14E30, 37F75
- DOI: https://doi.org/10.1090/tran/9053
- MathSciNet review: 4669316