Convex-compact subgroups of the Goeritz group
HTML articles powered by AMS MathViewer
- by Bena Tshishiku;
- Trans. Amer. Math. Soc. 377 (2024), 271-322
- DOI: https://doi.org/10.1090/tran/8905
- Published electronically: October 4, 2023
- HTML | PDF | Request permission
Abstract:
Let $G<\operatorname {Mod}_2$ be the Goeritz subgroup of the genus-2 mapping class group. We show that finitely-generated, purely pseudo-Anosov subgroups of $G$ are convex cocompact in $\operatorname {Mod}_2$, addressing a case of a general question of Farb–Mosher. We also give a simple criterion to determine if a Goeritz mapping class is pseudo-Anosov, which we use to give very explicit convex-cocompact subgroups. In our analysis, a central role is played by the primitive disk complex $\mathcal {P}$. In particular, we (1) establish a version of the Masur–Minksy distance-formula for $\mathcal {P}$, (2) classify subsurfaces $X\subset S$ that are infinite-diameter holes of $\mathcal {P}$, and (3) show that $\mathcal {P}$ is quasi-isometric to a coned-off Cayley graph for $G$.References
- Erol Akbas, A presentation for the automorphisms of the 3-sphere that preserve a genus two Heegaard splitting, Pacific J. Math. 236 (2008), no. 2, 201–222. MR 2407105, DOI 10.2140/pjm.2008.236.201
- Selman Akbulut and John D. McCarthy, Casson’s invariant for oriented homology $3$-spheres, Mathematical Notes, vol. 36, Princeton University Press, Princeton, NJ, 1990. An exposition. MR 1030042, DOI 10.1515/9781400860623
- C. Abbott and J. Manning, Boundaries of coned-off hyperbolic spaces, 2021.
- Mladen Bestvina, Ken Bromberg, and Koji Fujiwara, Constructing group actions on quasi-trees and applications to mapping class groups, Publ. Math. Inst. Hautes Études Sci. 122 (2015), 1–64. MR 3415065, DOI 10.1007/s10240-014-0067-4
- Mladen Bestvina, Kenneth Bromberg, Autumn E. Kent, and Christopher J. Leininger, Undistorted purely pseudo-Anosov groups, J. Reine Angew. Math. 760 (2020), 213–227. MR 4069890, DOI 10.1515/crelle-2018-0013
- M. Bestvina, Questions in geometric group theory, July 2004, http://www.math.utah.edu/~bestvina.
- Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR 1744486, DOI 10.1007/978-3-662-12494-9
- Joan S. Birman, Alex Lubotzky, and John McCarthy, Abelian and solvable subgroups of the mapping class groups, Duke Math. J. 50 (1983), no. 4, 1107–1120. MR 726319, DOI 10.1215/S0012-7094-83-05046-9
- Sangbum Cho, Homeomorphisms of the 3-sphere that preserve a Heegaard splitting of genus two, Proc. Amer. Math. Soc. 136 (2008), no. 3, 1113–1123. MR 2361888, DOI 10.1090/S0002-9939-07-09188-5
- Sangbum Cho, Yuya Koda, and Jung Hoon Lee, Disk surgery and the primitive disk complexes of the 3-sphere, Topology Appl. 272 (2020), 107092, 6. MR 4060160, DOI 10.1016/j.topol.2020.107092
- Spencer Dowdall, Richard P. Kent IV, and Christopher J. Leininger, Pseudo-Anosov subgroups of fibered 3-manifold groups, Groups Geom. Dyn. 8 (2014), no. 4, 1247–1282. MR 3314946, DOI 10.4171/GGD/302
- Benson Farb and Lee Mosher, Convex cocompact subgroups of mapping class groups, Geom. Topol. 6 (2002), 91–152. MR 1914566, DOI 10.2140/gt.2002.6.91
- Benson Farb and Dan Margalit, A primer on mapping class groups, Princeton Mathematical Series, vol. 49, Princeton University Press, Princeton, NJ, 2012. MR 2850125
- F. González-Acuña, Dehn’s construction on knots, Bol. Soc. Mat. Mexicana (2) 15 (1970), 58–79. MR 356022
- Rita Gitik, Mahan Mitra, Eliyahu Rips, and Michah Sageev, Widths of subgroups, Trans. Amer. Math. Soc. 350 (1998), no. 1, 321–329. MR 1389776, DOI 10.1090/S0002-9947-98-01792-9
- Lebrecht Goeritz, Die abbildungen der brezelfläche und der vollbrezel vom geschlecht 2, Abh. Math. Sem. Univ. Hamburg 9 (1933), no. 1, 244–259 (German). MR 3069602, DOI 10.1007/BF02940650
- C. McA. Gordon, On primitive sets of loops in the boundary of a handlebody, Topology Appl. 27 (1987), no. 3, 285–299. MR 918538, DOI 10.1016/0166-8641(87)90093-9
- Marshall Hall Jr., Coset representations in free groups, Trans. Amer. Math. Soc. 67 (1949), 421–432. MR 32642, DOI 10.1090/S0002-9947-1949-0032642-4
- U. Hamenstädt, Word hyperbolic extensions of surface groups, Preprint, arXiv:math.GT/0505244, 2005.
- Allen Hatcher, Homeomorphisms of sufficiently large $P^{2}$-irreducible $3$-manifolds, Topology 15 (1976), no. 4, 343–347. MR 420620, DOI 10.1016/0040-9383(76)90027-6
- Richard P. Kent IV and Christopher J. Leininger, Subgroups of mapping class groups from the geometrical viewpoint, In the tradition of Ahlfors-Bers. IV, Contemp. Math., vol. 432, Amer. Math. Soc., Providence, RI, 2007, pp. 119–141. MR 2342811, DOI 10.1090/conm/432/08306
- Richard P. Kent IV and Christopher J. Leininger, Shadows of mapping class groups: capturing convex cocompactness, Geom. Funct. Anal. 18 (2008), no. 4, 1270–1325. MR 2465691, DOI 10.1007/s00039-008-0680-9
- Richard P. Kent IV, Christopher J. Leininger, and Saul Schleimer, Trees and mapping class groups, J. Reine Angew. Math. 637 (2009), 1–21. MR 2599078, DOI 10.1515/CRELLE.2009.087
- Thomas Koberda, Johanna Mangahas, and Samuel J. Taylor, The geometry of purely loxodromic subgroups of right-angled Artin groups, Trans. Amer. Math. Soc. 369 (2017), no. 11, 8179–8208. MR 3695858, DOI 10.1090/tran/6933
- Honglin Min, Hyperbolic graphs of surface groups, Algebr. Geom. Topol. 11 (2011), no. 1, 449–476. MR 2783234, DOI 10.2140/agt.2011.11.449
- H. A. Masur and Y. N. Minsky, Geometry of the complex of curves. II. Hierarchical structure, Geom. Funct. Anal. 10 (2000), no. 4, 902–974. MR 1791145, DOI 10.1007/PL00001643
- Howard A. Masur and Yair N. Minsky, Quasiconvexity in the curve complex, In the tradition of Ahlfors and Bers, III, Contemp. Math., vol. 355, Amer. Math. Soc., Providence, RI, 2004, pp. 309–320. MR 2145071, DOI 10.1090/conm/355/06460
- Howard Masur, Lee Mosher, and Saul Schleimer, On train-track splitting sequences, Duke Math. J. 161 (2012), no. 9, 1613–1656. MR 2942790, DOI 10.1215/00127094-1593344
- Shigeyuki Morita, Casson’s invariant for homology $3$-spheres and characteristic classes of surface bundles. I, Topology 28 (1989), no. 3, 305–323. MR 1014464, DOI 10.1016/0040-9383(89)90011-6
- Lee Mosher, A hyperbolic-by-hyperbolic hyperbolic group, Proc. Amer. Math. Soc. 125 (1997), no. 12, 3447–3455. MR 1443845, DOI 10.1090/S0002-9939-97-04249-4
- Lee Mosher, Problems in the geometry of surface group extensions, Problems on mapping class groups and related topics, Proc. Sympos. Pure Math., vol. 74, Amer. Math. Soc., Providence, RI, 2006, pp. 245–256. MR 2264544, DOI 10.1090/pspum/074/2264544
- Howard Masur and Saul Schleimer, The geometry of the disk complex, J. Amer. Math. Soc. 26 (2013), no. 1, 1–62. MR 2983005, DOI 10.1090/S0894-0347-2012-00742-5
- Johanna Mangahas and Samuel J. Taylor, Convex cocompactness in mapping class groups via quasiconvexity in right-angled Artin groups, Proc. Lond. Math. Soc. (3) 112 (2016), no. 5, 855–881. MR 3502022, DOI 10.1112/plms/pdw009
- Ulrich Oertel, Automorphisms of three-dimensional handlebodies, Topology 41 (2002), no. 2, 363–410. MR 1876895, DOI 10.1016/S0040-9383(00)00041-0
- Adam Piggott, Palindromic primitives and palindromic bases in the free group of rank two, J. Algebra 304 (2006), no. 1, 359–366. MR 2256396, DOI 10.1016/j.jalgebra.2005.12.005
- Martin Scharlemann, The complex of curves on nonorientable surfaces, J. London Math. Soc. (2) 25 (1982), no. 1, 171–184. MR 645874, DOI 10.1112/jlms/s2-25.1.171
- Martin Scharlemann, Automorphisms of the 3-sphere that preserve a genus two Heegaard splitting, Bol. Soc. Mat. Mexicana (3) 10 (2004), no. Special Issue, 503–514. MR 2199366
- S. Schleimer, Notes on the complex of curves, Online Lecture Notes, 2020.
- Jean-Pierre Serre, Trees, Springer-Verlag, Berlin-New York, 1980. Translated from the French by John Stillwell. MR 607504, DOI 10.1007/978-3-642-61856-7
- Peter Scott and Terry Wall, Topological methods in group theory, Homological group theory (Proc. Sympos., Durham, 1977) London Math. Soc. Lecture Note Ser., vol. 36, Cambridge Univ. Press, Cambridge-New York, 1979, pp. 137–203. MR 564422
- Friedhelm Waldhausen, Heegaard-Zerlegungen der $3$-Sphäre, Topology 7 (1968), 195–203 (German). MR 227992, DOI 10.1016/0040-9383(68)90027-X
- D. I. Wallace, Conjugacy classes of hyperbolic matrices in $\textrm {Sl}(n,\,\textbf {Z})$ and ideal classes in an order, Trans. Amer. Math. Soc. 283 (1984), no. 1, 177–184. MR 735415, DOI 10.1090/S0002-9947-1984-0735415-0
- Kim Whittlesey, Normal all pseudo-Anosov subgroups of mapping class groups, Geom. Topol. 4 (2000), 293–307. MR 1786168, DOI 10.2140/gt.2000.4.293
- H. Cišang, Simple path systems on full pretzels, Mat. Sb. (N.S.) 66(108) (1965), 230–239 (Russian). MR 193633
Bibliographic Information
- Bena Tshishiku
- Affiliation: Department of Mathematics, Brown University, Providence, Rhode Island
- MR Author ID: 941027
- ORCID: 0000-0001-8282-8677
- Email: bena_tshishiku@brown.edu
- Received by editor(s): January 27, 2022
- Received by editor(s) in revised form: January 9, 2023
- Published electronically: October 4, 2023
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 271-322
- MSC (2020): Primary 57K20; Secondary 20F65, 20F67
- DOI: https://doi.org/10.1090/tran/8905
- MathSciNet review: 4684593