Monodromie unipotente maximale, congruences “à la Lucas” et indépendance algébrique
HTML articles powered by AMS MathViewer
- by Daniel Vargas Montoya;
- Trans. Amer. Math. Soc. 377 (2024), 167-202
- DOI: https://doi.org/10.1090/tran/8913
- Published electronically: October 4, 2023
- HTML | PDF | Request permission
Abstract:
Let $f(z)$ be in $1+z\mathbb {Q}[[z]]$ and $\mathcal {S}$ be an infinite set of prime numbers such that, for all $p\in \mathcal {S}$, we can reduce $f(z)$ modulo $p$. We let $f(z)_{\mid p}$ denote the reduction of $f(z)$ modulo $p$. Generally, when $f(z)$ is D-finite, $f_{\mid p}(z)$ is algebraic over $\mathbb {F}_p(z)$. It turns out that if $f_{\mid p}(z)$ is a solution of a polynomial of the form $X-A_p(z)X^{p^l}$, we can use this type of equations to obtain results of transcendence and algebraic independence over $\mathbb {Q}(z)$. In the present paper, we look for conditions on the differential operators annihilating $f(z)$ to guarantee the existence of these particular equations. Suppose that $f(z)$ is solution of a differential operator $\mathcal {H}\in \mathbb {Q}(z)[d/dz]$ having a strong Frobenius structure for all $p\in \mathcal {S}$ and we also suppose that $f(z)$ annihilates a Fuchsian differential operator $\mathcal {D}\in \mathbb {Q}(z)[d/dz]$ such that zero is a regular singular point of $\mathcal {D}$ and the exponents of $\mathcal {D}$ at zero are equal to zero. Our main result states that, for almost every prime $p\in \mathcal {S}$, $f_{\mid p}(z)$ is solution of a polynomial of the form $X-A_p(z)X^{p^l}$, where $A_p(z)$ is a rational function with coefficients in $\mathbb {F}_p$ of height less than or equal to $Cp^{2l}$ with $C$ a positive constant that does not depend on $p$. We also study the algebraic independence of these power series over $\mathbb {Q}(z)$.References
- Boris Adamczewski and Jason P. Bell, Diagonalization and rationalization of algebraic Laurent series, Ann. Sci. Éc. Norm. Supér. (4) 46 (2013), no. 6, 963–1004 (English, with English and French summaries). MR 3134685, DOI 10.24033/asens.2207
- Boris Adamczewski, Jason P. Bell, and Éric Delaygue, Algebraic independence of $G$-functions and congruences “à la Lucas”, Ann. Sci. Éc. Norm. Supér. (4) 52 (2019), no. 3, 515–559 (English, with English and French summaries). MR 3982874, DOI 10.24033/asens.2392
- Boris Adamczewski, Codages de rotations et phénomènes d’autosimilarité, J. Théor. Nombres Bordeaux 14 (2002), no. 2, 351–386 (French, with English and French summaries). MR 2040682, DOI 10.5802/jtnb.363
- J.-P. Allouche, D. Gouyou-Beauchamps, and G. Skordev, Transcendence of binomial and Lucas’ formal power series, J. Algebra 210 (1998), no. 2, 577–592. MR 1662292, DOI 10.1006/jabr.1998.7606
- G. Almkvist, C. Van Eckenvort, D. Van Straten, and W. Zudilin, Tables of Calbi-Yau equations, prepint 2010, arXiv:0507430, 130 pp.
- Alin Bostan, Pierre Lairez, and Bruno Salvy, Multiple binomial sums. part 2, J. Symbolic Comput. 80 (2017), no. part 2, 351–386. MR 3574517, DOI 10.1016/j.jsc.2016.04.002
- Gilles Christol, Ensembles presque periodiques $k$-reconnaissables, Theoret. Comput. Sci. 9 (1979), no. 1, 141–145 (French, with English summary). MR 535129, DOI 10.1016/0304-3975(79)90011-2
- Gilles Christol, Systèmes différentiels linéaires $p$-adiques, structure de Frobenius faible, Bull. Soc. Math. France 109 (1981), no. 1, 83–122 (French, with English summary). MR 613849, DOI 10.24033/bsmf.1933
- Gilles Christol, Modules différentiels et équations différentielles $p$-adiques, Queen’s Papers in Pure and Applied Mathematics, vol. 66, Queen’s University, Kingston, ON, 1983 (French). MR 772749
- Gilles Christol, Un théorème de transfert pour les disques singuliers réguliers, Astérisque 119-120 (1984), 5, 151–168 (French, with English summary). $p$-adic cohomology. MR 773091
- Gilles Christol, Diagonales de fractions rationnelles et équations de Picard-Fuchs, Study group on ultrametric analysis, 12th year, 1984/85, No. 1, Secrétariat Math., Paris, 1985, pp. Exp. No. 13, 12 (French). MR 848993
- Gilles Christol, Fonctions et éléments algébriques, Pacific J. Math. 125 (1986), no. 1, 1–37 (French, with English summary). MR 860747, DOI 10.2140/pjm.1986.125.1
- Gilles Christol, Globally bounded solutions of differential equations, Analytic number theory (Tokyo, 1988) Lecture Notes in Math., vol. 1434, Springer, Berlin, 1990, pp. 45–64. MR 1071744, DOI 10.1007/BFb0097124
- B. M. Dwork, On $p$-adic differential equations. I. The Frobenius structure of differential equations, Table Ronde d’Analyse Non Archimédienne (Paris, 1972) Supplément au Bull. Soc. Math. France, Tome 102, Soc. Math. France, Paris, 1974, pp. 27–37. MR 571892, DOI 10.24033/msmf.161
- Bernard Dwork, Giovanni Gerotto, and Francis J. Sullivan, An introduction to $G$-functions, Annals of Mathematics Studies, vol. 133, Princeton University Press, Princeton, NJ, 1994. MR 1274045
- Samuel Eilenberg, Automata, languages, and machines. Vol. A, Pure and Applied Mathematics, Vol. 58, Academic Press [Harcourt Brace Jovanovich, Publishers], New York, 1974. MR 530382
- Ira Gessel, Some congruences for Apéry numbers, J. Number Theory 14 (1982), no. 3, 362–368. MR 660381, DOI 10.1016/0022-314X(82)90071-3
- Taira Honda, Algebraic differential equations, Symposia Mathematica, Vol. XXIV (Sympos., INDAM, Rome, 1979) Academic Press, London-New York, 1981, pp. 169–204. MR 619247
- Amita Malik and Armin Straub, Divisibility properties of sporadic Apéry-like numbers, Res. Number Theory 2 (2016), Paper No. 5, 26. MR 3501018, DOI 10.1007/s40993-016-0036-8
- R. Mestrovic, Lucas’ theorem: its generalizations, extensions and applications (1878–2014), preprint 2014, arXiv:1409.3820, 51 pp.
- Marius van der Put and Michael F. Singer, Galois theory of linear differential equations, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 328, Springer-Verlag, Berlin, 2003. MR 1960772, DOI 10.1007/978-3-642-55750-7
- Richard P. Stanley, Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62, Cambridge University Press, Cambridge, 1999. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin. MR 1676282, DOI 10.1017/CBO9780511609589
- Daniel Vargas-Montoya, Algébricité modulo $p$, séries hypergéométriques et structures de Frobenius fortes, Bull. Soc. Math. France 149 (2021), no. 3, 439–477 (French, with English and French summaries). MR 4349570, DOI 10.24033/bsmf.2834
- Christopher F. Woodcock and Habib Sharif, On the transcendence of certain series, J. Algebra 121 (1989), no. 2, 364–369. MR 992771, DOI 10.1016/0021-8693(89)90072-0
Bibliographic Information
- Daniel Vargas Montoya
- Affiliation: Institut Camille Jordan, Université Claude Bernard Lyon 1, Batîment Braconnier, 21 Avenue Claude Bernard, 69100 Villeurbanne
- MR Author ID: 1478406
- Email: vargas@math.univ-lyon1.fr
- Received by editor(s): August 11, 2021
- Received by editor(s) in revised form: November 3, 2022
- Published electronically: October 4, 2023
- Additional Notes: This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 648132.
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 167-202
- MSC (2020): Primary 11E95, 11J85, 12H25, 34M99
- DOI: https://doi.org/10.1090/tran/8913
- MathSciNet review: 4684590