The continuity of $p$-rationality and a lower bound for $pโ$-degree characters of finite groups
HTML articles powered by AMS MathViewer
- by Nguyen Ngoc Hung;
- Trans. Amer. Math. Soc. 377 (2024), 323-344
- DOI: https://doi.org/10.1090/tran/8926
- Published electronically: October 25, 2023
- HTML | PDF | Request permission
Abstract:
Let $p$ be a prime and $G$ a finite group. We propose a strong bound for the number of $pโ$-degree irreducible characters of $G$ in terms of the commutator factor group of a Sylow $p$-subgroup of $G$. The bound arises from a recent conjecture of Navarro and Tiep [Forum Math. Pi 9 (2021), pp. 1โ28] on fields of character values and a phenomenon called the continuity of $p$-rationality level of $pโ$-degree characters. This continuity property in turn is predicted by the celebrated McKay-Navarro conjecture (see G. Navarro [Ann. of Math. (2) 160 (2004), pp. 1129โ1140]). We achieve both the bound and the continuity property for $p=2$.References
- Richard Brauer, Representations of finite groups, Lectures on Modern Mathematics, Vol. I, Wiley, New York-London, 1963, pp.ย 133โ175. MR 178056
- Marc Cabanes and Michel Enguehard, Representation theory of finite reductive groups, New Mathematical Monographs, vol. 1, Cambridge University Press, Cambridge, 2004. MR 2057756, DOI 10.1017/CBO9780511542763
- R. W. Carter, Centralizers of semisimple elements in the finite classical groups, Proc. London Math. Soc. (3) 42 (1981), no.ย 1, 1โ41. MR 602121, DOI 10.1112/plms/s3-42.1.1
- Roger W. Carter, Finite groups of Lie type, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1985. Conjugacy classes and complex characters; A Wiley-Interscience Publication. MR 794307
- Everett C. Dade, Counting characters in blocks with cyclic defect groups. I, J. Algebra 186 (1996), no.ย 3, 934โ969. MR 1424599, DOI 10.1006/jabr.1996.0401
- Franรงois Digne and Jean Michel, Representations of finite groups of Lie type, London Mathematical Society Student Texts, vol. 21, Cambridge University Press, Cambridge, 1991. MR 1118841, DOI 10.1017/CBO9781139172417
- Silvio Dolfi, Emanuele Pacifici, Lucia Sanus, and Pablo Spiga, On the orders of zeros of irreducible characters, J. Algebra 321 (2009), no.ย 1, 345โ352. MR 2469367, DOI 10.1016/j.jalgebra.2008.10.004
- Paul Fong and Bhama Srinivasan, The blocks of finite classical groups, J. Reine Angew. Math. 396 (1989), 122โ191. MR 988550
- Meinolf Geck and Gunter Malle, The character theory of finite groups of Lie type, Cambridge Studies in Advanced Mathematics, vol. 187, Cambridge University Press, Cambridge, 2020. A guided tour. MR 4211779, DOI 10.1017/9781108779081
- Eugenio Giannelli, Alexander Kleshchev, Gabriel Navarro, and Pham Huu Tiep, Restriction of odd degree characters and natural correspondences, Int. Math. Res. Not. IMRN 20 (2017), 6089โ6118. MR 3712192, DOI 10.1093/imrn/rnw174
- D. Gorenstein, R. Lyons, and R. Solomon, The Classification of the Finite Simple Groups, Math. Surveys Monogr., vol. 3, Amer. Math. Soc., Providence, 1994.
- N. N. Hung, On the $p$-rationality and Sylow restrictions of $pโ$-degree characters, In preparation.
- Nguyen Ngoc Hung, Gunter Malle, and Attila Marรณti, On almost $p$-rational characters of $pโ$-degree, Forum Math. 34 (2022), no.ย 6, 1475โ1496. MR 4504103, DOI 10.1515/forum-2022-0005
- I. Martin Isaacs, Character theory of finite groups, AMS Chelsea Publishing, Providence, RI, 2006. Corrected reprint of the 1976 original [Academic Press, New York; MR0460423]. MR 2270898, DOI 10.1090/chel/359
- I. Martin Isaacs, Finite group theory, Graduate Studies in Mathematics, vol. 92, American Mathematical Society, Providence, RI, 2008. MR 2426855, DOI 10.1090/gsm/092
- I. M. Isaacs, M. W. Liebeck, Gabriel Navarro, and Pham Huu Tiep, Fields of values of odd-degree irreducible characters, Adv. Math. 354 (2019), 106757, 26. MR 3989533, DOI 10.1016/j.aim.2019.106757
- I. M. Isaacs and Gabriel Navarro, Characters of $pโ$-degree of $p$-solvable groups, J. Algebra 246 (2001), no.ย 1, 394โ413. MR 1872628, DOI 10.1006/jabr.2001.8985
- I. M. Isaacs, Gabriel Navarro, and Josu Sangroniz, $p$-groups having few almost-rational irreducible characters, Israel J. Math. 189 (2012), 65โ96. MR 2931388, DOI 10.1007/s11856-011-0153-y
- G. Lusztig, Rationality properties of unipotent representations, J. Algebra 258 (2002), no.ย 1, 1โ22. Special issue in celebration of Claudio Procesiโs 60th birthday. MR 1958895, DOI 10.1016/S0021-8693(02)00514-8
- Alexander S. Kleshchev and Pham Huu Tiep, Representations of finite special linear groups in non-defining characteristic, Adv. Math. 220 (2009), no.ย 2, 478โ504. MR 2466423, DOI 10.1016/j.aim.2008.09.011
- Gunter Malle, Height 0 characters of finite groups of Lie type, Represent. Theory 11 (2007), 192โ220. MR 2365640, DOI 10.1090/S1088-4165-07-00312-3
- Gunter Malle, The Navarro-Tiep Galois conjecture for $p=2$, Arch. Math. (Basel) 112 (2019), no.ย 5, 449โ457. MR 3943465, DOI 10.1007/s00013-019-01298-6
- Gunter Malle and Attila Marรณti, On the number of $pโ$-degree characters in a finite group, Int. Math. Res. Not. IMRN 20 (2016), 6118โ6132. MR 3579960, DOI 10.1093/imrn/rnv314
- Gunter Malle and Britta Spรคth, Characters of odd degree, Ann. of Math. (2) 184 (2016), no.ย 3, 869โ908. MR 3549625, DOI 10.4007/annals.2016.184.3.6
- John McKay, Irreducible representations of odd degree, J. Algebra 20 (1972), 416โ418. MR 286904, DOI 10.1016/0021-8693(72)90066-X
- Gabriel Navarro, The McKay conjecture and Galois automorphisms, Ann. of Math. (2) 160 (2004), no.ย 3, 1129โ1140. MR 2144975, DOI 10.4007/annals.2004.160.1129
- Gabriel Navarro, Character theory and the McKay conjecture, Cambridge Studies in Advanced Mathematics, vol. 175, Cambridge University Press, Cambridge, 2018. MR 3753712, DOI 10.1017/9781108552790
- Gabriel Navarro and Pham Huu Tiep, Characters of relative $pโ$-degree over normal subgroups, Ann. of Math. (2) 178 (2013), no.ย 3, 1135โ1171. MR 3092477, DOI 10.4007/annals.2013.178.3.7
- Gabriel Navarro and Pham Huu Tiep, Real groups and Sylow 2-subgroups, Adv. Math. 299 (2016), 331โ360. MR 3519471, DOI 10.1016/j.aim.2016.05.013
- Gabriel Navarro and Pham Huu Tiep, Sylow subgroups, exponents, and character values, Trans. Amer. Math. Soc. 372 (2019), no.ย 6, 4263โ4291. MR 4009430, DOI 10.1090/tran/7816
- Gabriel Navarro and Pham Huu Tiep, The fields of values of characters of degree not divisible by $p$, Forum Math. Pi 9 (2021), Paper No. e2, 28. MR 4219241, DOI 10.1017/fmp.2021.1
- Gabriel Navarro, Pham Huu Tiep, and Alexandre Turull, $p$-rational characters and self-normalizing Sylow $p$-subgroups, Represent. Theory 11 (2007), 84โ94. MR 2306612, DOI 10.1090/S1088-4165-07-00263-4
- Amanda A. Schaeffer Fry and Jay Taylor, On self-normalising Sylow 2-subgroups in type A, J. Lie Theory 28 (2018), no.ย 1, 139โ168. MR 3694099
- Bhama Srinivasan and C. Ryan Vinroot, Galois group action and Jordan decomposition of characters of finite reductive groups with connected center, J. Algebra 558 (2020), 708โ727. MR 4102110, DOI 10.1016/j.jalgebra.2019.04.025
- Jay Taylor, Action of automorphisms on irreducible characters of symplectic groups, J. Algebra 505 (2018), 211โ246. MR 3789911, DOI 10.1016/j.jalgebra.2018.03.008
Bibliographic Information
- Nguyen Ngoc Hung
- Affiliation: Department of Mathematics, The University of Akron, Akron, Ohio 44325
- MR Author ID: 843888
- ORCID: 0000-0002-5950-6271
- Email: hungnguyen@uakron.edu
- Received by editor(s): June 9, 2022
- Received by editor(s) in revised form: January 10, 2023
- Published electronically: October 25, 2023
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 323-344
- MSC (2020): Primary 20C15, 20C33
- DOI: https://doi.org/10.1090/tran/8926
- MathSciNet review: 4684594