Dynamics of several point vortices for the lake equations
HTML articles powered by AMS MathViewer
- by Lars Eric Hientzsch, Christophe Lacave and Evelyne Miot;
- Trans. Amer. Math. Soc. 377 (2024), 203-248
- DOI: https://doi.org/10.1090/tran/8995
- Published electronically: October 4, 2023
- HTML | PDF
Abstract:
The global asymptotic dynamics of point vortices for the lake equations is rigorously derived. Vorticity that is initially sharply concentrated around $N$ distinct vortex centers is proven to remain concentrated for all times. Specifically, we prove weak concentration of the vorticity and in addition strong concentration in the direction of the steepest ascent of the depth function. As a consequence, we obtain the motion law of point vortices following at leading order the level lines of the depth function. The lack of strong localization in the second direction is linked to the vortex filamentation phenomena. The main result allows for any fixed number of vortices and general assumptions on the concentration property of the initial data to be considered. No further properties such as a specific profile or symmetry of the data are required. Vanishing topographies on the boundary are included in our analysis. Our method is inspired by recent results on the evolution of vortex rings in 3D axisymmetric incompressible fluids.References
- Lars V. Ahlfors, Lectures on quasiconformal mappings, Van Nostrand Mathematical Studies, No. 10, D. Van Nostrand Co., Inc., Toronto, Ont.-New York-London, 1966. Manuscript prepared with the assistance of Clifford J. Earle, Jr. MR 200442
- Bilal Al Taki and Christophe Lacave, Degenerate lake equations: classical solutions and vanishing viscosity limit, Nonlinearity 36 (2023), no. 1, 653–678. MR 4521955, DOI 10.1088/1361-6544/aca865
- Didier Bresch, Marguerite Gisclon, and Chi-Kun Lin, An example of low Mach (Froude) number effects for compressible flows with nonconstant density (height) limit, M2AN Math. Model. Numer. Anal. 39 (2005), no. 3, 477–486. MR 2157146, DOI 10.1051/m2an:2005026
- Didier Bresch and Pierre-Emmanuel Jabin, Quantitative estimates for advective equation with degenerate anelastic constraint, Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. III. Invited lectures, World Sci. Publ., Hackensack, NJ, 2018, pp. 2167–2192. MR 3966846
- Didier Bresch and Guy Métivier, Global existence and uniqueness for the lake equations with vanishing topography: elliptic estimates for degenerate equations, Nonlinearity 19 (2006), no. 3, 591–610. MR 2209290, DOI 10.1088/0951-7715/19/3/004
- Paolo Buttà, Guido Cavallaro, and Carlo Marchioro, Global time evolution of concentrated vortex rings, Z. Angew. Math. Phys. 73 (2022), no. 2, Paper No. 70, 24. MR 4393065, DOI 10.1007/s00033-022-01708-w
- Paolo Buttà and Carlo Marchioro, Long time evolution of concentrated Euler flows with planar symmetry, SIAM J. Math. Anal. 50 (2018), no. 1, 735–760. MR 3757102, DOI 10.1137/16M1103725
- Paolo Buttà and Carlo Marchioro, Time evolution of concentrated vortex rings, J. Math. Fluid Mech. 22 (2020), no. 2, Paper No. 19, 21. MR 4068861, DOI 10.1007/s00021-020-0482-x
- L. Da Rios, Sul moto d’un liquido indefinito con un filetto vorticoso di forma qualunque, Palermo Rend. 22 (1906), 117–135.
- Justin Dekeyser and Jean Van Schaftingen, Vortex motion for the lake equations, Comm. Math. Phys. 375 (2020), no. 2, 1459–1501. MR 4083896, DOI 10.1007/s00220-020-03742-z
- Benoît Desjardins, A few remarks on ordinary differential equations, Comm. Partial Differential Equations 21 (1996), no. 11-12, 1667–1703. MR 1421208, DOI 10.1080/03605309608821242
- R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98 (1989), no. 3, 511–547. MR 1022305, DOI 10.1007/BF01393835
- Harvey Philip Greenspan, The theory of rotating fluids, Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press, Cambridge-New York, 1980. Reprint of the 1968 original. MR 639897
- B. Gustafsson and A. Vasil’ev, Conformal and potential analysis in Hele-Shaw cells, Adv. Math. Fluid Mech., Birkhäuser, Basel, 2006.
- Lars Eric Hientzsch, Christophe Lacave, and Evelyne Miot, Lake equations with an evanescent or emergent island, Commun. Math. Sci. 20 (2022), no. 1, 85–122. MR 4359251, DOI 10.4310/CMS.2022.v20.n1.a3
- Dragoş Iftimie, Évolution de tourbillon à support compact, Journées “Équations aux Dérivées Partielles” (Saint-Jean-de-Monts, 1999) Univ. Nantes, Nantes, 1999, pp. Exp. No. IV, 8 (French, with French summary). MR 1718962
- Robert L. Jerrard and Christian Seis, On the vortex filament conjecture for Euler flows, Arch. Ration. Mech. Anal. 224 (2017), no. 1, 135–172. MR 3609248, DOI 10.1007/s00205-016-1070-3
- Christophe Lacave and Evelyne Miot, Uniqueness for the vortex-wave system when the vorticity is constant near the point vortex, SIAM J. Math. Anal. 41 (2009), no. 3, 1138–1163. MR 2529959, DOI 10.1137/080737629
- Christophe Lacave, Toan T. Nguyen, and Benoit Pausader, Topography influence on the lake equations in bounded domains, J. Math. Fluid Mech. 16 (2014), no. 2, 375–406. MR 3208722, DOI 10.1007/s00021-013-0158-x
- C. D. Levermore, M. Oliver, and E. S. Titi, Global well-posedness for the lake equation, Phys. D 98 (1996), no. 2–4, 492–509.
- Thomas Leweke, Stéphane Le Dizès, and Charles H. K. Williamson, Dynamics and instabilities of vortex pairs, Annual review of fluid mechanics. Vol. 48, Annu. Rev. Fluid Mech., vol. 48, Annual Reviews, Palo Alto, CA, 2016, pp. 507–541. MR 3726395
- Carlo Marchioro, On the localization of the vortices, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1 (1998), no. 3, 571–584 (English, with Italian summary). MR 1662329
- Carlo Marchioro and Mario Pulvirenti, On the vortex-wave system, Mechanics, analysis and geometry: 200 years after Lagrange, North-Holland Delta Ser., North-Holland, Amsterdam, 1991, pp. 79–95. MR 1098512
- Carlo Marchioro and Mario Pulvirenti, Vortices and localization in Euler flows, Comm. Math. Phys. 154 (1993), no. 1, 49–61. MR 1220946, DOI 10.1007/BF02096831
- Carlo Marchioro and Mario Pulvirenti, Mathematical theory of incompressible nonviscous fluids, Applied Mathematical Sciences, vol. 96, Springer-Verlag, New York, 1994. MR 1245492, DOI 10.1007/978-1-4612-4284-0
- Patrice Meunier and Thomas Leweke, Elliptic instability of a co-rotating vortex pair, J. Fluid Mech. 533 (2005), 125–159. MR 2263305, DOI 10.1017/S0022112005004325
- D. H. Peregrine, Surf zone currents, Theor. Comput. Fluid Dyn., 10 (1998), no. 1–4, 295–309.
- G. Richardson, Vortex motion in shallow water with varying bottom topography and zero Froude number, J. Fluid Mech. 411 (2000), 351–374. MR 1762572, DOI 10.1017/S0022112099008393
- Arthur Sard, The measure of the critical values of differentiable maps, Bull. Amer. Math. Soc. 48 (1942), 883–890. MR 7523, DOI 10.1090/S0002-9904-1942-07811-6
- J. J. Thomson, A treatise on the motion of vortex rings, Macmillan and Co., London, 1883.
- S. E. Widnall and J. P. Sullivan, On the stability of vortex rings, Proc. Roy. Soc. Lond. Ser. A 332 (1973), 335–353.
- W. Wolibner, Un theorème sur l’existence du mouvement plan d’un fluide parfait, homogène, incompressible, pendant un temps infiniment long, Math. Z. 37 (1933), no. 1, 698–726 (French). MR 1545430, DOI 10.1007/BF01474610
- V. I. Judovič, Non-stationary flows of an ideal incompressible fluid, Ž. Vyčisl. Mat i Mat. Fiz. 3 (1963), 1032–1066 (Russian). MR 158189
Bibliographic Information
- Lars Eric Hientzsch
- Affiliation: Fakultät für Mathematik, Universität Bielefeld, Postfach 10 01 31, 33501 Bielefeld, Germany
- MR Author ID: 1410719
- ORCID: 0000-0002-5001-9530
- Email: lhientzsch@math.uni-bielefeld.de
- Christophe Lacave
- Affiliation: Univ. Grenoble Alpes, CNRS, Institut Fourier, F-38000 Grenoble, France
- MR Author ID: 878311
- ORCID: 0000-0002-2488-4117
- Email: christophe.lacave@univ-grenoble-alpes.fr
- Evelyne Miot
- Affiliation: Univ. Grenoble Alpes, CNRS, Institut Fourier, F-38000 Grenoble, France
- MR Author ID: 878324
- Email: evelyne.miot@univ-grenoble-alpes.fr
- Received by editor(s): December 6, 2022
- Published electronically: October 4, 2023
- Additional Notes: This work was supported by the French National Research Agency in the framework of the project “SINGFLOWS” (ANR-18-CE40-0027-01). The first author was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - SFB 1283/2 2021 - 317210226. The third author was supported by the project “INFAMIE” (ANR-15-CE40-01).
- © Copyright 2023 by the authors
- Journal: Trans. Amer. Math. Soc. 377 (2024), 203-248
- MSC (2020): Primary 35Q31, 76B47, 76M45
- DOI: https://doi.org/10.1090/tran/8995
- MathSciNet review: 4684591