Estimates for negative eigenvalues of Schrödinger operators on unbounded fractal spaces
HTML articles powered by AMS MathViewer
- by Wei Tang and Zhiyong Wang;
- Trans. Amer. Math. Soc. 377 (2024), 697-730
- DOI: https://doi.org/10.1090/tran/9005
- Published electronically: October 6, 2023
- HTML | PDF | Request permission
Abstract:
We study an asymptotic formula for the number of negative eigenvalues of Schrödinger operators on unbounded fractal spaces, which admit a cellular decomposition. We first give some sufficient conditions for Weyl-type asymptotic formula to hold. Second, we verify these conditions for the infinite blowup of Sierpiński gasket and unbounded generalized Sierpiński carpets. Finally, we demonstrate how the result can be applied to the infinite blowup of certain fractals associated with iterated function systems with overlaps, including those defining the classical infinite Bernoulli convolution with golden ratio.References
- V. Bargmann, On the number of bound states in a central field of force, Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 961–966. MR 54135, DOI 10.1073/pnas.38.11.961
- Martin T. Barlow and Richard F. Bass, The construction of Brownian motion on the Sierpiński carpet, Ann. Inst. H. Poincaré Probab. Statist. 25 (1989), no. 3, 225–257 (English, with French summary). MR 1023950
- Martin T. Barlow and Richard F. Bass, Local times for Brownian motion on the Sierpiński carpet, Probab. Theory Related Fields 85 (1990), no. 1, 91–104. MR 1044302, DOI 10.1007/BF01377631
- M. T. Barlow and R. F. Bass, On the resistance of the Sierpiński carpet, Proc. Roy. Soc. London Ser. A 431 (1990), no. 1882, 345–360. MR 1080496, DOI 10.1098/rspa.1990.0135
- Martin T. Barlow and Richard F. Bass, Transition densities for Brownian motion on the Sierpiński carpet, Probab. Theory Related Fields 91 (1992), no. 3-4, 307–330. MR 1151799, DOI 10.1007/BF01192060
- Martin T. Barlow and Richard F. Bass, Coupling and Harnack inequalities for Sierpiński carpets, Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 2, 208–212. MR 1215306, DOI 10.1090/S0273-0979-1993-00424-5
- Martin T. Barlow and Richard F. Bass, Brownian motion and harmonic analysis on Sierpinski carpets, Canad. J. Math. 51 (1999), no. 4, 673–744. MR 1701339, DOI 10.4153/CJM-1999-031-4
- Martin T. Barlow, Richard F. Bass, Takashi Kumagai, and Alexander Teplyaev, Uniqueness of Brownian motion on Sierpiński carpets, J. Eur. Math. Soc. (JEMS) 12 (2010), no. 3, 655–701. MR 2639315, DOI 10.4171/jems/211
- Erik J. Bird, Sze-Man Ngai, and Alexander Teplyaev, Fractal Laplacians on the unit interval, Ann. Sci. Math. Québec 27 (2003), no. 2, 135–168 (English, with English and French summaries). MR 2103098
- M. Š. Birman and V. V. Borzov, The asymptotic behavior of the discrete spectrum of certain singular differential operators, Problems of mathematical physics, No. 5: Spectral theory (Russian), Izdat. Leningrad. Univ., Leningrad, 1971, pp. 24–38 (Russian). MR 301568
- F. Calogero, Upper and lower limits for the number of bound states in a given central potential, Comm. Math. Phys. 1 (1965), 80–88. MR 181250, DOI 10.1007/BF01649591
- Joe P. Chen, Stanislav Molchanov, and Alexander Teplyaev, Spectral dimension and Bohr’s formula for Schrödinger operators on unbounded fractal spaces, J. Phys. A 48 (2015), no. 39, 395203, 27. MR 3400921, DOI 10.1088/1751-8113/48/39/395203
- J. H. E. Cohn, On the number of negative eigen-values of a singular boundary value problem, J. London Math. Soc. 40 (1965), 523–525. MR 190424, DOI 10.1112/jlms/s1-40.1.523
- Joseph G. Conlon, A new proof of the Cwikel-Lieb-Rosenbljum bound, Rocky Mountain J. Math. 15 (1985), no. 1, 117–122. MR 779256, DOI 10.1216/RMJ-1985-15-1-117
- Michael Cwikel, Weak type estimates for singular values and the number of bound states of Schrödinger operators, Ann. of Math. (2) 106 (1977), no. 1, 93–100. MR 473576, DOI 10.2307/1971160
- De-Jun Feng and Eric Olivier, Multifractal analysis of weak Gibbs measures and phase transition—application to some Bernoulli convolutions, Ergodic Theory Dynam. Systems 23 (2003), no. 6, 1751–1784. MR 2032487, DOI 10.1017/S0143385703000051
- Masatoshi Fukushima, Yoichi Oshima, and Masayoshi Takeda, Dirichlet forms and symmetric Markov processes, Second revised and extended edition, De Gruyter Studies in Mathematics, vol. 19, Walter de Gruyter & Co., Berlin, 2011. MR 2778606
- Alexander Grigor’yan and Nikolai Nadirashvili, Negative eigenvalues of two-dimensional Schrödinger operators, Arch. Ration. Mech. Anal. 217 (2015), no. 3, 975–1028. MR 3356993, DOI 10.1007/s00205-015-0848-z
- Alexander Grigor′yan, Yuri Netrusov, and Shing-Tung Yau, Eigenvalues of elliptic operators and geometric applications, Surveys in differential geometry. Vol. IX, Surv. Differ. Geom., vol. 9, Int. Press, Somerville, MA, 2004, pp. 147–217. MR 2195408, DOI 10.4310/SDG.2004.v9.n1.a5
- Qingsong Gu, Jiaxin Hu, and Sze-Man Ngai, Geometry of self-similar measures on intervals with overlaps and applications to sub-Gaussian heat kernel estimates, Commun. Pure Appl. Anal. 19 (2020), no. 2, 641–676. MR 4043760, DOI 10.3934/cpaa.2020030
- B. M. Hambly, Asymptotics for functions associated with heat flow on the Sierpinski carpet, Canad. J. Math. 63 (2011), no. 1, 153–180. MR 2779136, DOI 10.4153/CJM-2010-079-7
- B. M. Hambly and S. O. G. Nyberg, Finitely ramified graph-directed fractals, spectral asymptotics and the multidimensional renewal theorem, Proc. Edinb. Math. Soc. (2) 46 (2003), no. 1, 1–34. MR 1961168, DOI 10.1017/S0013091500000730
- Jiaxin Hu, Ka-Sing Lau, and Sze-Man Ngai, Laplace operators related to self-similar measures on $\Bbb R^d$, J. Funct. Anal. 239 (2006), no. 2, 542–565. MR 2261337, DOI 10.1016/j.jfa.2006.07.005
- Naotaka Kajino, Spectral asymptotics for Laplacians on self-similar sets, J. Funct. Anal. 258 (2010), no. 4, 1310–1360. MR 2565841, DOI 10.1016/j.jfa.2009.11.001
- Jun Kigami, Analysis on fractals, Cambridge Tracts in Mathematics, vol. 143, Cambridge University Press, Cambridge, 2001. MR 1840042, DOI 10.1017/CBO9780511470943
- Jun Kigami and Michel L. Lapidus, Weyl’s problem for the spectral distribution of Laplacians on p.c.f. self-similar fractals, Comm. Math. Phys. 158 (1993), no. 1, 93–125. MR 1243717, DOI 10.1007/BF02097233
- Shigeo Kusuoka and Zhou Xian Yin, Dirichlet forms on fractals: Poincaré constant and resistance, Probab. Theory Related Fields 93 (1992), no. 2, 169–196. MR 1176724, DOI 10.1007/BF01195228
- Ka-Sing Lau, Jianrong Wang, and Cho-Ho Chu, Vector-valued Choquet-Deny theorem, renewal equation and self-similar measures, Studia Math. 117 (1995), no. 1, 1–28. MR 1367690, DOI 10.4064/sm-117-1-1-28
- Ka-Sing Lau and Sze-Man Ngai, $L^q$-spectrum of the Bernoulli convolution associated with the golden ratio, Studia Math. 131 (1998), no. 3, 225–251. MR 1644468
- Ka-Sing Lau and Sze-Man Ngai, Second-order self-similar identities and multifractal decompositions, Indiana Univ. Math. J. 49 (2000), no. 3, 925–972. MR 1803217, DOI 10.1512/iumj.2000.49.1789
- Ka-Sing Lau and Xiang-Yang Wang, Some exceptional phenomena in multifractal formalism. I, Asian J. Math. 9 (2005), no. 2, 275–294. MR 2176611, DOI 10.4310/AJM.2005.v9.n2.a13
- Daniel Levin and Michael Solomyak, The Rozenblum-Lieb-Cwikel inequality for Markov generators, J. Anal. Math. 71 (1997), 173–193. MR 1454250, DOI 10.1007/BF02788029
- Peter Li and Shing Tung Yau, On the Schrödinger equation and the eigenvalue problem, Comm. Math. Phys. 88 (1983), no. 3, 309–318. MR 701919, DOI 10.1007/BF01213210
- Elliott Lieb, Bounds on the eigenvalues of the Laplace and Schroedinger operators, Bull. Amer. Math. Soc. 82 (1976), no. 5, 751–753. MR 407909, DOI 10.1090/S0002-9904-1976-14149-3
- A. Martin, Bound states in the strong coupling limit, Helv. Phys. Acta 45 (1972), 140–148.
- Stanislav Molchanov and Oleg Safronov, Negative spectra of elliptic operators, Bull. Math. Sci. 2 (2012), no. 2, 321–329. MR 2994206, DOI 10.1007/s13373-012-0025-8
- S. Molchanov and B. Vainberg, On the negative spectrum of the hierarchical Schrödinger operator, J. Funct. Anal. 263 (2012), no. 9, 2676–2688. MR 2967303, DOI 10.1016/j.jfa.2012.08.019
- S. Molchanov and B. Vainberg, Bargmann type estimates of the counting function for general Schrödinger operators, J. Math. Sci. (N.Y.) 184 (2012), no. 4, 457–508. Problems in mathematical analysis. No. 65. MR 2962816, DOI 10.1007/s10958-012-0877-1
- Stanislav Molchanov and Boris Vainberg, On general Cwikel-Lieb-Rozenblum and Lieb-Thirring inequalities, Around the research of Vladimir Maz’ya. III, Int. Math. Ser. (N. Y.), vol. 13, Springer, New York, 2010, pp. 201–246. MR 2664710, DOI 10.1007/978-1-4419-1345-6_{8}
- S. Molchanov and B. Vainberg, On negative spectrum of Schrödinger type operators, Analysis, partial differential equations and applications, Oper. Theory Adv. Appl., vol. 193, Birkhäuser Verlag, Basel, 2009, pp. 197–214. MR 2766072, DOI 10.1007/978-3-7643-9898-9_{1}5
- K. Naimark and M. Solomyak, Regular and pathological eigenvalue behavior for the equation $-\lambda u''=Vu$ on the semiaxis, J. Funct. Anal. 151 (1997), no. 2, 504–530. MR 1491550, DOI 10.1006/jfan.1997.3149
- Sze-Man Ngai, Spectral asymptotics of Laplacians associated with one-dimensional iterated function systems with overlaps, Canad. J. Math. 63 (2011), no. 3, 648–688. MR 2828537, DOI 10.4153/CJM-2011-011-3
- Sze-Man Ngai and Wei Tang, Eigenvalue asymptotics and Bohr’s formula for fractal Schrödinger operators, Pacific J. Math. 300 (2019), no. 1, 83–119. MR 3985681, DOI 10.2140/pjm.2019.300.83
- Sze-Man Ngai, Wei Tang, and Yuanyuan Xie, Wave propagation speed on fractals, J. Fourier Anal. Appl. 26 (2020), no. 2, Paper No. 31, 38. MR 4074023, DOI 10.1007/s00041-019-09716-7
- Sze-Man Ngai, Wei Tang, and Yuanyuan Xie, Spectral asymptotics of one-dimensional fractal Laplacians in the absence of second-order identities, Discrete Contin. Dyn. Syst. 38 (2018), no. 4, 1849–1887. MR 3809018, DOI 10.3934/dcds.2018076
- Michael Reed and Barry Simon, Methods of modern mathematical physics. IV. Analysis of operators, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 493421
- M. Reed and B. Simon, Methods of modern mathematical physics. I. Functional analysis, Academic Press, New York, 1980.
- G. V. Rozenbljum, Distribution of the discrete spectrum of singular differential operators, Dokl. Akad. Nauk SSSR 202 (1972), 1012–1015 (Russian). MR 295148
- Eugene Shargorodsky, On negative eigenvalues of two-dimensional Schrödinger operators, Proc. Lond. Math. Soc. (3) 108 (2014), no. 2, 441–483. MR 3166359, DOI 10.1112/plms/pdt036
- Robert S. Strichartz, Fractafolds based on the Sierpiński gasket and their spectra, Trans. Amer. Math. Soc. 355 (2003), no. 10, 4019–4043. MR 1990573, DOI 10.1090/S0002-9947-03-03171-4
- Robert S. Strichartz, Differential equations on fractals, Princeton University Press, Princeton, NJ, 2006. A tutorial. MR 2246975, DOI 10.1515/9780691186832
- Robert S. Strichartz, A fractal quantum mechanical model with Coulomb potential, Commun. Pure Appl. Anal. 8 (2009), no. 2, 743–755. MR 2461574, DOI 10.3934/cpaa.2009.8.743
- Robert S. Strichartz, Arthur Taylor, and Tong Zhang, Densities of self-similar measures on the line, Experiment. Math. 4 (1995), no. 2, 101–128. MR 1377413, DOI 10.1080/10586458.1995.10504313
- Hideo Tamura, The asymptotic eigenvalue distribution for non-smooth elliptic operators, Proc. Japan Acad. 50 (1974), 19–22. MR 364899
- W. Tang and Z.-Y. Wang, Strong damping wave equations defined by a class of self-similar measures with overlaps, J. Anal. Math., in press, DOI: 10.1007/s11854-022-0267-7.
- W. Tang and Z. Y. Wang, Weyl’s asymptotic formula for fractal Laplacians defined by a class of self-similar measures with overlaps, Anal. Math. 49 (2023), no. 2, 661–679. MR 4599044, DOI 10.1007/s10476-023-0222-6
- Hermann Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung), Math. Ann. 71 (1912), no. 4, 441–479 (German). MR 1511670, DOI 10.1007/BF01456804
Bibliographic Information
- Wei Tang
- Affiliation: School of Mathematics and Statistics, Hunan First Normal University, Changsha, Hunan 410205, People’s Republic of China
- ORCID: 0000-0002-2550-2504
- Email: twmath2016@163.com
- Zhiyong Wang
- Affiliation: School of Mathematics and Statistics, Hunan First Normal University, Changsha, Hunan 410205, People’s Republic of China
- Email: wzyzzql@163.com
- Received by editor(s): February 15, 2022
- Received by editor(s) in revised form: May 30, 2023
- Published electronically: October 6, 2023
- Additional Notes: The first author was supported by the NNSF of China (Grants No. 11901187 and 11771136) and the Hunan Provincial NSF (Grant No. 2023JJ40201). The second author was supported by the NNSF of China (Grants No. 12001183 and 11831007).
The second author is the corresponding author - © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 697-730
- MSC (2020): Primary 28A80, 35J10; Secondary 35P20, 35J05
- DOI: https://doi.org/10.1090/tran/9005
- MathSciNet review: 4684604