Global behavior of small data solutions for the 2D Dirac–Klein-Gordon system
HTML articles powered by AMS MathViewer
- by Shijie Dong, Kuijie Li, Yue Ma and Xu Yuan;
- Trans. Amer. Math. Soc. 377 (2024), 649-695
- DOI: https://doi.org/10.1090/tran/9011
- Published electronically: October 11, 2023
- HTML | PDF | Request permission
Abstract:
In this paper, we are interested in the two-dimensional Dirac–Klein-Gordon system, which is a basic model in particle physics. We investigate the global behavior of small data solutions to this system in the case of a massive scalar field and a massless Dirac field. More precisely, our main result is twofold: (1) we show sharp time decay for the pointwise estimates of the solutions, which implies the asymptotic stability of this system; (2) we show the linear scattering result of this system which is a fundamental problem when it is viewed as dispersive equations. Our result is valid for general small, high-regular initial data, and in particular, there is no restriction on the support of the initial data.References
- S. Alinhac, The null condition for quasilinear wave equations in two space dimensions I, Invent. Math. 145 (2001), no. 3, 597–618. MR 1856402, DOI 10.1007/s002220100165
- Serge Alinhac, Hyperbolic partial differential equations, Universitext, Springer, Dordrecht, 2009. MR 2524198, DOI 10.1007/978-0-387-87823-2
- Alain Bachelot, Problème de Cauchy global pour des systèmes de Dirac-Klein-Gordon, Ann. Inst. H. Poincaré Phys. Théor. 48 (1988), no. 4, 387–422 (French, with English summary). MR 969173
- Ioan Bejenaru and Sebastian Herr, On global well-posedness and scattering for the massive Dirac-Klein-Gordon system, J. Eur. Math. Soc. (JEMS) 19 (2017), no. 8, 2445–2467. MR 3668064, DOI 10.4171/JEMS/721
- Ioan Bejenaru and Sebastian Herr, The cubic Dirac equation: small initial data in $H^{\frac 12}(\Bbb R^2)$, Comm. Math. Phys. 343 (2016), no. 2, 515–562. MR 3477346, DOI 10.1007/s00220-015-2508-4
- Nikolaos Bournaveas, Low regularity solutions of the Dirac Klein-Gordon equations in two space dimensions, Comm. Partial Differential Equations 26 (2001), no. 7-8, 1345–1366. MR 1855281, DOI 10.1081/PDE-100106136
- N. Bournaveas, A new proof of global existence for the Dirac Klein-Gordon equations in one space dimension, J. Funct. Anal. 173 (2000), no. 1, 203–213. MR 1760283, DOI 10.1006/jfan.1999.3559
- Timothy Candy and Sebastian Herr, Conditional large initial data scattering results for the Dirac-Klein-Gordon system, Forum Math. Sigma 6 (2018), Paper No. e9, 55. MR 3816948, DOI 10.1017/fms.2018.8
- John M. Chadam and Robert T. Glassey, On certain global solutions of the Cauchy problem for the (classical) coupled Klein-Gordon-Dirac equations in one and three space dimensions, Arch. Rational Mech. Anal. 54 (1974), 223–237. MR 369952, DOI 10.1007/BF00250789
- X. Chen, Global stability of Minkowski spacetime for a spin-1/2 field, Preprint, arXiv:2201.08280.
- Yvonne Choquet-Bruhat, Solutions globales des équations de Maxwell-Dirac-Klein-Gordon (masses nulles), C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 2, 153–158 (French, with English summary). MR 610307
- Piero D’Ancona, Damiano Foschi, and Sigmund Selberg, Local well-posedness below the charge norm for the Dirac-Klein-Gordon system in two space dimensions, J. Hyperbolic Differ. Equ. 4 (2007), no. 2, 295–330. MR 2329387, DOI 10.1142/S0219891607001148
- Piero D’Ancona, Damiano Foschi, and Sigmund Selberg, Null structure and almost optimal local regularity for the Dirac-Klein-Gordon system, J. Eur. Math. Soc. (JEMS) 9 (2007), no. 4, 877–899. MR 2341835, DOI 10.4171/JEMS/100
- Shijie Dong, Asymptotic behavior of the solution to the Klein-Gordon-Zakharov model in dimension two, Comm. Math. Phys. 384 (2021), no. 1, 587–607. MR 4252885, DOI 10.1007/s00220-021-04003-3
- Shijie Dong, Global solution to the wave and Klein-Gordon system under null condition in dimension two, J. Funct. Anal. 281 (2021), no. 11, Paper No. 109232, 29. MR 4316723, DOI 10.1016/j.jfa.2021.109232
- Shijie Dong, Philippe G. LeFloch, and Zoe Wyatt, Global evolution of the $\rm U(1)$ Higgs Boson: nonlinear stability and uniform energy bounds, Ann. Henri Poincaré 22 (2021), no. 3, 677–713. MR 4226448, DOI 10.1007/s00023-020-00955-9
- Shijie Dong and Kuijie Li, Global solution to the cubic Dirac equation in two space dimensions, J. Differential Equations 331 (2022), 192–222. MR 4435916, DOI 10.1016/j.jde.2022.05.022
- S. Dong and Y. Ma, Global existence and scattering of the Klein-Gordon-Zakharov system in two space dimensions, Preprint, arXiv:2111.00244. To appear in Peking Mathematical Journal.
- Shijie Dong, Yue Ma, and Xu Yuan, Asymptotic behavior of 2D wave-Klein-Gordon coupled system under null condition, Bull. Sci. Math. 187 (2023), Paper No. 103313, 43. MR 4621970, DOI 10.1016/j.bulsci.2023.103313
- S. Dong and Z. Wyatt, Asymptotic stability for the Dirac-Klein-Gordon system in two space dimensions, Preprint, arXiv:2105.13780, to appear in Annales de l’Institut Henri Poincaré C. Analyse Non Linéaire.
- Senhao Duan and Yue Ma, Global solutions of wave-Klein–Gordon systems in $2+1$ dimensional space-time with strong couplings in divergence form, SIAM J. Math. Anal. 54 (2022), no. 3, 2691–2726. MR 4414496, DOI 10.1137/20M1377229
- S. Duan, Y. Ma, and W. Zhang, Nonlinear stability of the totally geodesic wave maps in anisotropic manifolds, Preprint, arXiv:2204.12525.
- Vladimir Georgiev, Decay estimates for the Klein-Gordon equation, Comm. Partial Differential Equations 17 (1992), no. 7-8, 1111–1139. MR 1179280, DOI 10.1080/03605309208820879
- Axel Grünrock and Hartmut Pecher, Global solutions for the Dirac-Klein-Gordon system in two space dimensions, Comm. Partial Differential Equations 35 (2010), no. 1, 89–112. MR 2748619, DOI 10.1080/03605300903296306
- Zihua Guo, Kenji Nakanishi, and Shuxia Wang, Small energy scattering for the Klein-Gordon-Zakharov system with radial symmetry, Math. Res. Lett. 21 (2014), no. 4, 733–755. MR 3275645, DOI 10.4310/MRL.2014.v21.n4.a8
- Lars Hörmander, Lectures on nonlinear hyperbolic differential equations, Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 26, Springer-Verlag, Berlin, 1997. MR 1466700
- Alexandru D. Ionescu and Benoit Pausader, On the global regularity for a wave-Klein-Gordon coupled system, Acta Math. Sin. (Engl. Ser.) 35 (2019), no. 6, 933–986. MR 3952698, DOI 10.1007/s10114-019-8413-6
- Alexandru D. Ionescu and Benoît Pausader, The Einstein-Klein-Gordon coupled system: global stability of the Minkowski solution, Annals of Mathematics Studies, vol. 213, Princeton University Press, Princeton, NJ, 2022. MR 4422074
- S. Klainerman, The null condition and global existence to nonlinear wave equations, Nonlinear systems of partial differential equations in applied mathematics, Part 1 (Santa Fe, N.M., 1984) Lectures in Appl. Math., vol. 23, Amer. Math. Soc., Providence, RI, 1986, pp. 293–326. MR 837683
- S. Klainerman, Remark on the asymptotic behavior of the Klein-Gordon equation in $\textbf {R}^{n+1}$, Comm. Pure Appl. Math. 46 (1993), no. 2, 137–144. MR 1199196, DOI 10.1002/cpa.3160460202
- Sergiu Klainerman, Qian Wang, and Shiwu Yang, Global solution for massive Maxwell-Klein-Gordon equations, Comm. Pure Appl. Math. 73 (2020), no. 1, 63–109. MR 4033890, DOI 10.1002/cpa.21864
- Philippe G. LeFloch and Yue Ma, The hyperboloidal foliation method, Series in Applied and Computational Mathematics, vol. 2, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2014. MR 3362362
- P. G. LeFloch and Y. Ma, Nonlinear stability of self-gravitating massive fields, Preprint, arXiv:1712.10045.
- Jiongyue Li and Yunlong Zang, A vector field method for some nonlinear Dirac models in Minkowski spacetime, J. Differential Equations 273 (2021), 58–82. MR 4184660, DOI 10.1016/j.jde.2020.11.043
- T. Ozawa, K. Tsutaya, and Y. Tsutsumi, Normal form and global solutions for the Klein-Gordon-Zakharov equations, Ann. Inst. H. Poincaré C Anal. Non Linéaire 12 (1995), no. 4, 459–503 (English, with English and French summaries). MR 1341412, DOI 10.1016/S0294-1449(16)30156-1
- Tohru Ozawa, Kimitoshi Tsutaya, and Yoshio Tsutsumi, Global existence and asymptotic behavior of solutions for the Klein-Gordon equations with quadratic nonlinearity in two space dimensions, Math. Z. 222 (1996), no. 3, 341–362. MR 1400196, DOI 10.1007/PL00004540
- Jalal Shatah, Normal forms and quadratic nonlinear Klein-Gordon equations, Comm. Pure Appl. Math. 38 (1985), no. 5, 685–696. MR 803256, DOI 10.1002/cpa.3160380516
- Jacques C. H. Simon and Erik Taflin, The Cauchy problem for nonlinear Klein-Gordon equations, Comm. Math. Phys. 152 (1993), no. 3, 433–478. MR 1213298, DOI 10.1007/BF02096615
- Christopher D. Sogge, Lectures on nonlinear wave equations, Monographs in Analysis, II, International Press, Boston, MA, 1995. MR 1715192
- A. Stingo, Global existence of small amplitude solutions for a model quadratic quasi-linear coupled wave-Klein-Gordon system in two space dimension, with mildly decaying Cauchy data, Mem. Amer. Math. Soc., To appear, Preprint, arXiv:1810.10235.
- Yoshio Tsutsumi, Global solutions for the Dirac-Proca equations with small initial data in $3+1$ space time dimensions, J. Math. Anal. Appl. 278 (2003), no. 2, 485–499. MR 1974020, DOI 10.1016/S0022-247X(02)00662-5
- Xuecheng Wang, On global existence of 3D charge critical Dirac-Klein-Gordon system, Int. Math. Res. Not. IMRN 21 (2015), 10801–10846. MR 3456028, DOI 10.1093/imrn/rnv010
- Yu Xi Zheng, Regularity of weak solutions to a two-dimensional modified Dirac-Klein-Gordon system of equations, Comm. Math. Phys. 151 (1993), no. 1, 67–87. MR 1201656, DOI 10.1007/BF02096749
Bibliographic Information
- Shijie Dong
- Affiliation: Southern University of Science and Technology, SUSTech International Center for Mathematics, and Department of Mathematics, 518055 Shenzhen, P.R. China
- Email: dongsj@sustech.edu.cn, shijiedong1991@hotmail.com
- Kuijie Li
- Affiliation: Nankai University, School of Mathematical Sciences and LPMC, Tianjin 300071, P.R. China
- MR Author ID: 1507035
- Email: kuijiel@nankai.edu.cn
- Yue Ma
- Affiliation: Xi’an Jiaotong University, School of Mathematics and Statistics, 28 West Xianning Road, Xi’an, Shaanxi 710049, P.R. China
- Email: yuemath@xjtu.edu.cn
- Xu Yuan
- Affiliation: Department of Mathematics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, P.R. China
- Email: xu.yuan@cuhk.edu.hk
- Received by editor(s): July 29, 2022
- Received by editor(s) in revised form: May 27, 2023
- Published electronically: October 11, 2023
- Additional Notes: The author Kuijie Li is supported by NSFC(12301120), Fundamental Research Funds for the Central Universities, Nankai University(63231227) and Natural Science Foundation of Tianjin(22JCQNJC00710).
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 649-695
- MSC (2020): Primary 35L52, 35L71, 35Q41
- DOI: https://doi.org/10.1090/tran/9011
- MathSciNet review: 4684603