Multi-bubble Bourgain-Wang solutions to nonlinear Schrödinger equations
HTML articles powered by AMS MathViewer
- by Michael Röckner, Yiming Su and Deng Zhang;
- Trans. Amer. Math. Soc. 377 (2024), 517-588
- DOI: https://doi.org/10.1090/tran/9025
- Published electronically: September 12, 2023
- HTML | PDF | Request permission
Abstract:
We study a general class of focusing $L^2$-critical nonlinear Schrödinger equations with lower order perturbations, in the possible absence of the pseudo-conformal symmetry and the conservation law of energy. In dimensions one and two, we construct multi-bubble Bourgain-Wang type blow-up solutions, which behave like a sum of pseudo-conformal blow-up solutions that concentrate at $K$ distinct singularities, $1\leq K<{\infty }$, and a regular profile. Moreover, we obtain the uniqueness in the energy class where the convergence rate is within the order $(T-t)^{4+}$, for $t$ close to the blow-up time $T$. These results in particular apply to the canonical nonlinear Schrödinger equations and, through the pseudo-conformal transform, yield the existence and conditional uniqueness of non-pure multi-solitons, which behave asymptotically as a sum of multi-solitons and a dispersive part. Thus, the results provide new examples of the mass quantization conjecture and the soliton resolution conjecture. Furthermore, through a Doss-Sussman type transform, we obtain multi-bubble Bourgain-Wang solutions for stochastic nonlinear Schrödinger equations, where the driving noise is taken in the sense of controlled rough path.References
- O. Bang, P. L. Christiansen, F. If, and K. O. Rasmussen, Temperature effects in a nonlinear model of monolayer Scheibe aggregates, Phys. Rev. E 49 (1994), 4627–4636.
- O. Bang, P. L. Christiansen, F. If, K. Ø. Rasmussen, and Y. B. Gaididei, White noise in the two-dimensional nonlinear Schrödinger equation, Appl. Anal. 57 (1995), no. 1-2, 3–15. MR 1382938, DOI 10.1080/00036819508840335
- Viorel Barbu, Michael Röckner, and Deng Zhang, Stochastic nonlinear Schrödinger equations with linear multiplicative noise: rescaling approach, J. Nonlinear Sci. 24 (2014), no. 3, 383–409. MR 3215081, DOI 10.1007/s00332-014-9193-x
- Viorel Barbu, Michael Röckner, and Deng Zhang, Stochastic nonlinear Schrödinger equations, Nonlinear Anal. 136 (2016), 168–194. MR 3474409, DOI 10.1016/j.na.2016.02.010
- Viorel Barbu, Michael Röckner, and Deng Zhang, The stochastic logarithmic Schrödinger equation, J. Math. Pures Appl. (9) 107 (2017), no. 2, 123–149. MR 3597371, DOI 10.1016/j.matpur.2016.06.001
- Viorel Barbu, Michael Röckner, and Deng Zhang, Optimal bilinear control of nonlinear stochastic Schrödinger equations driven by linear multiplicative noise, Ann. Probab. 46 (2018), no. 4, 1957–1999. MR 3813983, DOI 10.1214/17-AOP1217
- A. Barchielli and M. Gregoratti, Quantum trajectories and measurements in continuous time, Lecture Notes in Physics, vol. 782, Springer, Heidelberg, 2009. The diffusive case. MR 2841028, DOI 10.1007/978-3-642-01298-3
- Marius Beceanu, A critical center-stable manifold for Schrödinger’s equation in three dimensions, Comm. Pure Appl. Math. 65 (2012), no. 4, 431–507. MR 2877342, DOI 10.1002/cpa.21387
- J. Bourgain, Problems in Hamiltonian PDE’s, Geom. Funct. Anal. Special Volume (2000), 32–56. GAFA 2000 (Tel Aviv, 1999). MR 1826248, DOI 10.1007/978-3-0346-0422-2_{2}
- Jean Bourgain and W. Wang, Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), no. 1-2, 197–215 (1998). Dedicated to Ennio De Giorgi. MR 1655515
- Z. Brzeźniak and A. Millet, On the stochastic Strichartz estimates and the stochastic nonlinear Schrödinger equation on a compact Riemannian manifold, Potential Anal. 41 (2014), no. 2, 269–315. MR 3232027, DOI 10.1007/s11118-013-9369-2
- Daomin Cao, Yiming Su, and Deng Zhang, On uniqueness of multi-bubble blow-up solutions and multi-solitons to $L^2$-critical nonlinear Schrödinger equations, Arch. Ration. Mech. Anal. 247 (2023), no. 1, Paper No. 4, 81. MR 4528944, DOI 10.1007/s00205-022-01832-x
- Thierry Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, vol. 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. MR 2002047, DOI 10.1090/cln/010
- T. Cazenave, An overview of the nonlinear Schrödinger equation, Lecture Notes, 2020, https://www.ljll.math.upmc.fr/cazenave/.
- Vianney Combet, Multi-soliton solutions for the supercritical gKdV equations, Comm. Partial Differential Equations 36 (2011), no. 3, 380–419. MR 2763331, DOI 10.1080/03605302.2010.503770
- Raphaël Côte, Construction of solutions to the subcritical gKdV equations with a given asymptotical behavior, J. Funct. Anal. 241 (2006), no. 1, 143–211. MR 2264249, DOI 10.1016/j.jfa.2006.04.007
- Raphaël Côte, Construction of solutions to the $L^2$-critical KdV equation with a given asymptotic behaviour, Duke Math. J. 138 (2007), no. 3, 487–531. MR 2322685, DOI 10.1215/S0012-7094-07-13835-3
- Raphaël Côte and Xavier Friederich, On smoothness and uniqueness of multi-solitons of the non-linear Schrödinger equations, Comm. Partial Differential Equations 46 (2021), no. 12, 2325–2385. MR 4321585, DOI 10.1080/03605302.2021.1941107
- R. Côte, C. E. Kenig, A. Lawrie, and W. Schlag, Profiles for the radial focusing $4d$ energy-critical wave equation, Comm. Math. Phys. 357 (2018), no. 3, 943–1008. MR 3769743, DOI 10.1007/s00220-017-3043-2
- Raphaël Côte and Stefan Le Coz, High-speed excited multi-solitons in nonlinear Schrödinger equations, J. Math. Pures Appl. (9) 96 (2011), no. 2, 135–166 (English, with English and French summaries). MR 2818710, DOI 10.1016/j.matpur.2011.03.004
- Raphaël Côte, Yvan Martel, and Frank Merle, Construction of multi-soliton solutions for the $L^2$-supercritical gKdV and NLS equations, Rev. Mat. Iberoam. 27 (2011), no. 1, 273–302. MR 2815738, DOI 10.4171/RMI/636
- A. de Bouard and A. Debussche, On the effect of a noise on the solutions of the focusing supercritical nonlinear Schrödinger equation, Probab. Theory Related Fields 123 (2002), no. 1, 76–96. MR 1906438, DOI 10.1007/s004400100183
- A. de Bouard and A. Debussche, The stochastic nonlinear Schrödinger equation in $H^1$, Stochastic Anal. Appl. 21 (2003), no. 1, 97–126. MR 1954077, DOI 10.1081/SAP-120017534
- Anne de Bouard and Arnaud Debussche, Blow-up for the stochastic nonlinear Schrödinger equation with multiplicative noise, Ann. Probab. 33 (2005), no. 3, 1078–1110. MR 2135313, DOI 10.1214/009117904000000964
- Anne de Bouard, Arnaud Debussche, and Laurent Di Menza, Theoretical and numerical aspects of stochastic nonlinear Schrödinger equations, Journées “Équations aux Dérivées Partielles” (Plestin-les-Grèves, 2001) Univ. Nantes, Nantes, 2001, pp. Exp. No. III, 13. MR 1843404
- Arnaud Debussche and Laurent Di Menza, Numerical simulation of focusing stochastic nonlinear Schrödinger equations, Phys. D 162 (2002), no. 3-4, 131–154. MR 1886808, DOI 10.1016/S0167-2789(01)00379-7
- A. Debussche and L. Di Menza, Numerical resolution of stochastic focusing NLS equations, Appl. Math. Lett. 15 (2002), no. 6, 661–669. MR 1913267, DOI 10.1016/S0893-9659(02)00025-3
- Benjamin Dodson, Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state, Adv. Math. 285 (2015), 1589–1618. MR 3406535, DOI 10.1016/j.aim.2015.04.030
- Thomas Duyckaerts, Hao Jia, Carlos Kenig, and Frank Merle, Soliton resolution along a sequence of times for the focusing energy critical wave equation, Geom. Funct. Anal. 27 (2017), no. 4, 798–862. MR 3678502, DOI 10.1007/s00039-017-0418-7
- Thomas Duyckaerts, Carlos Kenig, and Frank Merle, Classification of radial solutions of the focusing, energy-critical wave equation, Camb. J. Math. 1 (2013), no. 1, 75–144. MR 3272053, DOI 10.4310/CJM.2013.v1.n1.a3
- Thomas Duyckaerts, Carlos Kenig, and Frank Merle, Soliton resolution for the radial critical wave equation in all odd space dimensions, Acta Math. 230 (2023), no. 1, 1–92. MR 4567713, DOI 10.4310/acta.2023.v230.n1.a1
- S. Dyachenko, A. C. Newell, A. Pushkarev, and V. E. Zakharov, Optical turbulence: weak turbulence, condensates and collapsing filaments in the nonlinear Schrödinger equation, Phys. D 57 (1992), no. 1-2, 96–160. MR 1169619, DOI 10.1016/0167-2789(92)90090-A
- Chenjie Fan, log–log blow up solutions blow up at exactly $m$ points, Ann. Inst. H. Poincaré C Anal. Non Linéaire 34 (2017), no. 6, 1429–1482 (English, with English and French summaries). MR 3712007, DOI 10.1016/j.anihpc.2016.11.002
- Chenjie Fan, Yiming Su, and Deng Zhang, A note on log-log blow up solutions for stochastic nonlinear Schrödinger equations, Stoch. Partial Differ. Equ. Anal. Comput. 10 (2022), no. 4, 1500–1514. MR 4503172, DOI 10.1007/s40072-021-00213-x
- Peter K. Friz and Martin Hairer, A course on rough paths, Universitext, Springer, Cham, 2014. With an introduction to regularity structures. MR 3289027, DOI 10.1007/978-3-319-08332-2
- M. Gubinelli, Controlling rough paths, J. Funct. Anal. 216 (2004), no. 1, 86–140. MR 2091358, DOI 10.1016/j.jfa.2004.01.002
- Stephen J. Gustafson and Israel Michael Sigal, Mathematical concepts of quantum mechanics, 2nd ed., Universitext, Springer, Heidelberg, 2011. MR 3012853, DOI 10.1007/978-3-642-21866-8
- Sebastian Herr, Michael Röckner, and Deng Zhang, Scattering for stochastic nonlinear Schrödinger equations, Comm. Math. Phys. 368 (2019), no. 2, 843–884. MR 3949726, DOI 10.1007/s00220-019-03429-0
- Rowan Killip and Monica Vişan, Nonlinear Schrödinger equations at critical regularity, Evolution equations, Clay Math. Proc., vol. 17, Amer. Math. Soc., Providence, RI, 2013, pp. 325–437. MR 3098643
- Kihyun Kim and Soonsik Kwon, On pseudoconformal blow-up solutions to the self-dual Chern-Simons-Schrödinger equation: existence, uniqueness, and instability, Mem. Amer. Math. Soc. 284 (2023), no. 1409, vi+128. MR 4574850, DOI 10.1090/memo/1409
- Joachim Krieger, Yvan Martel, and Pierre Raphaël, Two-soliton solutions to the three-dimensional gravitational Hartree equation, Comm. Pure Appl. Math. 62 (2009), no. 11, 1501–1550. MR 2560043, DOI 10.1002/cpa.20292
- J. Krieger and W. Schlag, Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension, J. Amer. Math. Soc. 19 (2006), no. 4, 815–920. MR 2219305, DOI 10.1090/S0894-0347-06-00524-8
- J. Krieger and W. Schlag, Non-generic blow-up solutions for the critical focusing NLS in 1-D, J. Eur. Math. Soc. (JEMS) 11 (2009), no. 1, 1–125. MR 2471133, DOI 10.4171/JEMS/143
- Stefan Le Coz, Dong Li, and Tai-Peng Tsai, Fast-moving finite and infinite trains of solitons for nonlinear Schrödinger equations, Proc. Roy. Soc. Edinburgh Sect. A 145 (2015), no. 6, 1251–1282. MR 3427608, DOI 10.1017/S030821051500030X
- Stefan Le Coz and Tai-Peng Tsai, Infinite soliton and kink-soliton trains for nonlinear Schrödinger equations, Nonlinearity 27 (2014), no. 11, 2689–2709. MR 3274580, DOI 10.1088/0951-7715/27/11/2689
- Yvan Martel, Asymptotic $N$-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations, Amer. J. Math. 127 (2005), no. 5, 1103–1140. MR 2170139, DOI 10.1353/ajm.2005.0033
- Yvan Martel and Frank Merle, Multi solitary waves for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré C Anal. Non Linéaire 23 (2006), no. 6, 849–864 (English, with English and French summaries). MR 2271697, DOI 10.1016/j.anihpc.2006.01.001
- Yvan Martel and Pierre Raphaël, Strongly interacting blow up bubbles for the mass critical nonlinear Schrödinger equation, Ann. Sci. Éc. Norm. Supér. (4) 51 (2018), no. 3, 701–737 (English, with English and French summaries). MR 3831035, DOI 10.24033/asens.2364
- Jeremy Marzuola, Jason Metcalfe, and Daniel Tataru, Strichartz estimates and local smoothing estimates for asymptotically flat Schrödinger equations, J. Funct. Anal. 255 (2008), no. 6, 1497–1553. MR 2565717, DOI 10.1016/j.jfa.2008.05.022
- Frank Merle, Construction of solutions with exactly $k$ blow-up points for the Schrödinger equation with critical nonlinearity, Comm. Math. Phys. 129 (1990), no. 2, 223–240. MR 1048692, DOI 10.1007/BF02096981
- F. Merle, Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power, Duke Math. J. 69 (1993), no. 2, 427–454. MR 1203233, DOI 10.1215/S0012-7094-93-06919-0
- F. Merle and P. Raphael, Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation, Geom. Funct. Anal. 13 (2003), no. 3, 591–642. MR 1995801, DOI 10.1007/s00039-003-0424-9
- Frank Merle and Pierre Raphael, On universality of blow-up profile for $L^2$ critical nonlinear Schrödinger equation, Invent. Math. 156 (2004), no. 3, 565–672. MR 2061329, DOI 10.1007/s00222-003-0346-z
- Frank Merle and Pierre Raphael, The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation, Ann. of Math. (2) 161 (2005), no. 1, 157–222. MR 2150386, DOI 10.4007/annals.2005.161.157
- Frank Merle and Pierre Raphael, Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation, Comm. Math. Phys. 253 (2005), no. 3, 675–704. MR 2116733, DOI 10.1007/s00220-004-1198-0
- Frank Merle and Pierre Raphael, On a sharp lower bound on the blow-up rate for the $L^2$ critical nonlinear Schrödinger equation, J. Amer. Math. Soc. 19 (2006), no. 1, 37–90. MR 2169042, DOI 10.1090/S0894-0347-05-00499-6
- Frank Merle, Pierre Raphaël, and Jeremie Szeftel, The instability of Bourgain-Wang solutions for the $L^2$ critical NLS, Amer. J. Math. 135 (2013), no. 4, 967–1017. MR 3086066, DOI 10.1353/ajm.2013.0033
- Annie Millet, Alex D. Rodriguez, Svetlana Roudenko, and Kai Yang, Behavior of solutions to the 1D focusing stochastic nonlinear Schrödinger equation with spatially correlated noise, Stoch. Partial Differ. Equ. Anal. Comput. 9 (2021), no. 4, 1031–1080. MR 4333509, DOI 10.1007/s40072-021-00191-0
- Annie Millet, Svetlana Roudenko, and Kai Yang, Behaviour of solutions to the 1D focusing stochastic $L^2$-critical and supercritical nonlinear Schrödinger equation with space-time white noise, IMA J. Appl. Math. 86 (2021), no. 6, 1349–1396. MR 4338212, DOI 10.1093/imamat/hxab040
- Galina Perelman, On the formation of singularities in solutions of the critical nonlinear Schrödinger equation, Ann. Henri Poincaré 2 (2001), no. 4, 605–673. MR 1852922, DOI 10.1007/PL00001048
- Pierre Raphaël and Jeremie Szeftel, Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS, J. Amer. Math. Soc. 24 (2011), no. 2, 471–546. MR 2748399, DOI 10.1090/S0894-0347-2010-00688-1
- K. O. Rasmussen, Y. B. Gaididei, O. Bang, P. L. Chrisiansen, The influence of noise on critical collapse in the nonlinear Schrödinger equation, Phys. Letters A 204 (1995), 121–127.
- W. Schlag, Stable manifolds for an orbitally unstable nonlinear Schrödinger equation, Ann. of Math. (2) 169 (2009), no. 1, 139–227. MR 2480603, DOI 10.4007/annals.2009.169.139
- Yiming Su and Deng Zhang, Construction of minimal mass blow-up solutions to rough nonlinear Schrödinger equations, J. Funct. Anal. 284 (2023), no. 5, Paper No. 109796, 61. MR 4525612, DOI 10.1016/j.jfa.2022.109796
- Y. Su and D. Zhang, On the multi-bubble blow-up solutions to rough nonlinear Schrödinger equations, arXiv:2012.14037v1, 2020.
- Catherine Sulem and Pierre-Louis Sulem, The nonlinear Schrödinger equation, Applied Mathematical Sciences, vol. 139, Springer-Verlag, New York, 1999. Self-focusing and wave collapse. MR 1696311
- Terence Tao, Nonlinear dispersive equations, CBMS Regional Conference Series in Mathematics, vol. 106, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006. Local and global analysis. MR 2233925, DOI 10.1090/cbms/106
- Michael I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1982/83), no. 4, 567–576. MR 691044, DOI 10.1007/BF01208265
- Michael I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal. 16 (1985), no. 3, 472–491. MR 783974, DOI 10.1137/0516034
- Deng Zhang, Strichartz and local smoothing estimates for stochastic dispersive equations with linear multiplicative noise, SIAM J. Math. Anal. 54 (2022), no. 6, 5981–6017. MR 4508067, DOI 10.1137/21M1426304
- Deng Zhang, Optimal bilinear control of stochastic nonlinear Schrödinger equations: mass-(sub)critical case, Probab. Theory Related Fields 178 (2020), no. 1-2, 69–120. MR 4146535, DOI 10.1007/s00440-020-00971-0
Bibliographic Information
- Michael Röckner
- Affiliation: Fakultät für Mathematik, Universität Bielefeld, D-33501 Bielefeld, Germany; and Academy of Mathematics and Systems Science, CAS, Beijing, People’s Republic of China
- MR Author ID: 149365
- Email: roeckner@math.uni-bielefeld.de
- Yiming Su
- Affiliation: Department of mathematics, Zhejiang University of Technology, 310014 Zhejiang, People’s Republic of China
- Email: yimingsu@zjut.edu.cn
- Deng Zhang
- Affiliation: School of mathematical sciences, Shanghai Jiao Tong University, 200240 Shanghai, People’s Republic of China
- Email: dzhang@sjtu.edu.cn
- Received by editor(s): May 6, 2022
- Received by editor(s) in revised form: May 21, 2023
- Published electronically: September 12, 2023
- Additional Notes: Deng Zhang is the corresponding author
The first and third authors were financially supported by the Deutsche Forschungsgemeinschaft (DFG, German Science Foundation) through SFB 1283/2 2021-317210226 at Bielefeld University. The second author was supported by NSFC (No. 11601482, 12371122). The third author was also supported by NSFC (No. 12271352, 11871337, 12322108) and Shanghai Rising-Star Program 21QA1404500. - © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 517-588
- MSC (2020): Primary 35B44, 35B40, 35Q55
- DOI: https://doi.org/10.1090/tran/9025
- MathSciNet review: 4684601