Results on the algebraic matroid of the determinantal variety
HTML articles powered by AMS MathViewer
- by Manolis C. Tsakiris;
- Trans. Amer. Math. Soc. 377 (2024), 731-751
- DOI: https://doi.org/10.1090/tran/9055
- Published electronically: October 25, 2023
- HTML | PDF | Request permission
Abstract:
We make progress towards characterizing the algebraic matroid of the determinantal variety defined by the minors of fixed size of a matrix of variables. Our main result is a novel family of base sets of the matroid, which characterizes the matroid in special cases. Our approach relies on the combinatorial notion of relaxed supports of linkage matching fields that we introduce, our interpretation of the problem of completing a matrix of bounded rank from a subset of its entries as a linear section problem on the Grassmannian, and a connection that we draw with a class of local coordinates on the Grassmannian described by Sturmfels $\&$ Zelevinsky in 1993.References
- Winfried Bruns and Aldo Conca, Gröbner bases and determinantal ideals, Commutative algebra, singularities and computer algebra (Sinaia, 2002) NATO Sci. Ser. II Math. Phys. Chem., vol. 115, Kluwer Acad. Publ., Dordrecht, 2003, pp. 9–66. MR 2030262
- Winfried Bruns, Aldo Conca, Claudiu Raicu, and Matteo Varbaro, Determinants, Gröbner bases and cohomology, Springer Monographs in Mathematics, Springer, Cham, [2022] ©2022. MR 4627943, DOI 10.1007/978-3-031-05480-8
- Daniel Irving Bernstein, Completion of tree metrics and rank 2 matrices, Linear Algebra Appl. 533 (2017), 1–13. MR 3695897, DOI 10.1016/j.laa.2017.07.016
- Adam Boocher, Free resolutions and sparse determinantal ideals, Math. Res. Lett. 19 (2012), no. 4, 805–821. MR 3008416, DOI 10.4310/MRL.2012.v19.n4.a6
- Winfried Bruns and Udo Vetter, Determinantal rings, Monografías de Matemática [Mathematical Monographs], vol. 45, Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 1988. MR 986492, DOI 10.1007/BFb0080378
- David Bernstein and Andrei Zelevinsky, Combinatorics of maximal minors, J. Algebraic Combin. 2 (1993), no. 2, 111–121. MR 1229427, DOI 10.1023/A:1022492222930
- Aldo Conca, Emanuela De Negri, and Elisa Gorla, Universal Gröbner bases for maximal minors, Int. Math. Res. Not. IMRN 11 (2015), 3245–3262. MR 3373050, DOI 10.1093/imrn/rnu032
- A. Conca, E. De Negri, and E. Gorla, Universal Gröbner bases and Cartwright-Sturmfels ideals, Int. Math. Res. Not. IMRN 7 (2020), 1979–1991. MR 4089441, DOI 10.1093/imrn/rny075
- David A. Cox, John Little, and Donal O’Shea, Ideals, varieties, and algorithms, 4th ed., Undergraduate Texts in Mathematics, Springer, Cham, 2015. An introduction to computational algebraic geometry and commutative algebra. MR 3330490, DOI 10.1007/978-3-319-16721-3
- Aldo Conca, Maral Mostafazadehfard, Anurag K. Singh, and Matteo Varbaro, Hankel determinantal rings have rational singularities, Adv. Math. 335 (2018), 111–129. MR 3836659, DOI 10.1016/j.aim.2018.06.011
- Aldo Conca, Linear spaces, transversal polymatroids and ASL domains, J. Algebraic Combin. 25 (2007), no. 1, 25–41. MR 2284146, DOI 10.1007/s10801-006-0026-3
- Aldo Conca and Volkmar Welker, Lovász-Saks-Schrijver ideals and coordinate sections of determinantal varieties, Algebra Number Theory 13 (2019), no. 2, 455–484. MR 3927052, DOI 10.2140/ant.2019.13.455
- Jack Edmonds and D. R. Fulkerson, Transversals and matroid partition, J. Res. Nat. Bur. Standards Sect. B 69B (1965), 147–153. MR 188090
- David Eisenbud, Linear sections of determinantal varieties, Amer. J. Math. 110 (1988), no. 3, 541–575. MR 944327, DOI 10.2307/2374622
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960, DOI 10.1007/978-1-4612-5350-1
- J. A. Eagon and D. G. Northcott, Ideals defined by matrices and a certain complex associated with them, Proc. Roy. Soc. London Ser. A 269 (1962), 188–204. MR 142592, DOI 10.1098/rspa.1962.0170
- Alex Fink and Felipe Rincón, Stiefel tropical linear spaces, J. Combin. Theory Ser. A 135 (2015), 291–331. MR 3366480, DOI 10.1016/j.jcta.2015.06.001
- Satoru Fujishige, Submodular functions and optimization, 2nd ed., Annals of Discrete Mathematics, vol. 58, Elsevier B. V., Amsterdam, 2005. MR 2171629
- I. M. Gel′fand, M. I. Graev, and V. S. Retakh, $\Gamma$-series and general hypergeometric functions on the manifold of $k\times n$ matrices, Akad. Nauk SSSR Inst. Prikl. Mat. Preprint 64 (1990), 27 (Russian, with English summary). MR 1085796
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 463157
- M. Hochster and John A. Eagon, Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci, Amer. J. Math. 93 (1971), 1020–1058. MR 302643, DOI 10.2307/2373744
- Craig Huneke, Strongly Cohen-Macaulay schemes and residual intersections, Trans. Amer. Math. Soc. 277 (1983), no. 2, 739–763. MR 694386, DOI 10.1090/S0002-9947-1983-0694386-5
- Michael Kalkbrener and Bernd Sturmfels, Initial complexes of prime ideals, Adv. Math. 116 (1995), no. 2, 365–376. MR 1363769, DOI 10.1006/aima.1995.1071
- Franz J. Király, Louis Theran, and Ryota Tomioka, The algebraic combinatorial approach for low-rank matrix completion, J. Mach. Learn. Res. 16 (2015), 1391–1436. MR 3417786
- Serge Lang, Algebra, 3rd ed., Graduate Texts in Mathematics, vol. 211, Springer-Verlag, New York, 2002. MR 1878556, DOI 10.1007/978-1-4613-0041-0
- Alain Lascoux, Syzygies des variétés déterminantales, Adv. in Math. 30 (1978), no. 3, 202–237 (French). MR 520233, DOI 10.1016/0001-8708(78)90037-3
- Georg Loho and Ben Smith, Matching fields and lattice points of simplices, Adv. Math. 370 (2020), 107232, 42. MR 4104819, DOI 10.1016/j.aim.2020.107232
- F. S. Macaulay, The algebraic theory of modular systems, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1994. Revised reprint of the 1916 original; With an introduction by Paul Roberts. MR 1281612
- M. Giusti and M. Merle, Singularités isolées et sections planes de variétés déterminantielles. II. Sections de variétés déterminantielles par les plans de coordonnées, Algebraic geometry (La Rábida, 1981) Lecture Notes in Math., vol. 961, Springer, Berlin, 1982, pp. 103–118 (French). MR 708329, DOI 10.1007/BFb0071278
- Himanee Narasimhan, The irreducibility of ladder determinantal varieties, J. Algebra 102 (1986), no. 1, 162–185. MR 853237, DOI 10.1016/0021-8693(86)90134-1
- Zvi Rosen, Jessica Sidman, and Louis Theran, Algebraic matroids in action, Amer. Math. Monthly 127 (2020), no. 3, 199–216. MR 4067892, DOI 10.1080/00029890.2020.1689781
- Claudiu Raicu and Jerzy Weyman, Local cohomology with support in generic determinantal ideals, Algebra Number Theory 8 (2014), no. 5, 1231–1257. MR 3263142, DOI 10.2140/ant.2014.8.1231
- Amit Singer and Mihai Cucuringu, Uniqueness of low-rank matrix completion by rigidity theory, SIAM J. Matrix Anal. Appl. 31 (2009/10), no. 4, 1621–1641. MR 2595541, DOI 10.1137/090750688
- Jean-Pierre Serre, Local algebra, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2000. Translated from the French by CheeWhye Chin and revised by the author. MR 1771925, DOI 10.1007/978-3-662-04203-8
- David Speyer and Bernd Sturmfels, The tropical Grassmannian, Adv. Geom. 4 (2004), no. 3, 389–411. MR 2071813, DOI 10.1515/advg.2004.023
- Bernd Sturmfels, Gröbner bases and Stanley decompositions of determinantal rings, Math. Z. 205 (1990), no. 1, 137–144. MR 1069489, DOI 10.1007/BF02571229
- Bernd Sturmfels, Gröbner bases and convex polytopes, vol. 8, American Mathematical Society, 1996.
- Bernd Sturmfels and Andrei Zelevinsky, Maximal minors and their leading terms, Adv. Math. 98 (1993), no. 1, 65–112. MR 1212627, DOI 10.1006/aima.1993.1013
- R. Vakil, The Rising Sea: Foundations of Algebraic Geometry, 2017.
- Rafael H. Villarreal, Monomial algebras, Monographs and Textbooks in Pure and Applied Mathematics, vol. 238, Marcel Dekker, Inc., New York, 2001. MR 1800904
Bibliographic Information
- Manolis C. Tsakiris
- Affiliation: Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China; and Dipartimento di Matematica, Università di Genova, Via Dodecaneso 35, 16146 Genova, Italy
- MR Author ID: 1133841
- Email: manolis@amss.ac.cn
- Received by editor(s): April 9, 2022
- Received by editor(s) in revised form: February 22, 2023, and June 18, 2023
- Published electronically: October 25, 2023
- Additional Notes: The author was supported by the CAS Project for Young Scientists in Basic Research, Grant No. YSBR-034.
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 731-751
- MSC (2020): Primary 13C40, 14M12
- DOI: https://doi.org/10.1090/tran/9055
- MathSciNet review: 4684605