Fuglede commutations modulo Lorentz ideals
HTML articles powered by AMS MathViewer
- by Jingbo Xia;
- Trans. Amer. Math. Soc. 377 (2024), 249-269
- DOI: https://doi.org/10.1090/tran/9058
- Published electronically: October 19, 2023
- HTML | PDF | Request permission
Abstract:
We examine Fuglede commutation properties, particularly those in the context of Lorentz ideals, from a new perspective. We also show that Fuglede commutation property fails for a number of ideals.References
- A. Abdessemed and E. B. Davies, Some commutator estimates in the Schatten classes, J. London Math. Soc. (2) 39 (1989), no. 2, 299–308. MR 991663, DOI 10.1112/jlms/s2-39.2.299
- Hari Bercovici and Dan Voiculescu, The analogue of Kuroda’s theorem for $n$-tuples, The Gohberg anniversary collection, Vol. II (Calgary, AB, 1988) Oper. Theory Adv. Appl., vol. 41, Birkhäuser, Basel, 1989, pp. 57–60. MR 1038331
- Alain Connes, Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994. MR 1303779
- John B. Conway, A course in functional analysis, 2nd ed., Graduate Texts in Mathematics, vol. 96, Springer-Verlag, New York, 1990. MR 1070713
- Guy David and Dan Voiculescu, $s$-numbers of singular integrals for the invariance of absolutely continuous spectra in fractional dimensions, J. Funct. Anal. 94 (1990), no. 1, 14–26. MR 1077543, DOI 10.1016/0022-1236(90)90026-H
- Jacques Dixmier, Existence de traces non normales, C. R. Acad. Sci. Paris Sér. A-B 262 (1966), A1107–A1108 (French). MR 196508
- Quanlei Fang and Jingbo Xia, Schatten class membership of Hankel operators on the unit sphere, J. Funct. Anal. 257 (2009), no. 10, 3082–3134. MR 2568686, DOI 10.1016/j.jfa.2009.05.006
- Quanlei Fang and Jingbo Xia, A local inequality for Hankel operators on the sphere and its application, J. Funct. Anal. 266 (2014), no. 2, 876–930. MR 3132732, DOI 10.1016/j.jfa.2013.10.003
- Quanlei Fang and Jingbo Xia, On the membership of Hankel operators in a class of Lorentz ideals, J. Funct. Anal. 267 (2014), no. 4, 1137–1187. MR 3217060, DOI 10.1016/j.jfa.2014.05.010
- Quanlei Fang and Jingbo Xia, Best approximations in a class of Lorentz ideals, Complex Anal. Oper. Theory 16 (2022), no. 4, Paper No. 51, 25. MR 4403190, DOI 10.1007/s11785-022-01220-z
- Bent Fuglede, A commutativity theorem for normal operators, Proc. Nat. Acad. Sci. U.S.A. 36 (1950), 35–40. MR 32944, DOI 10.1073/pnas.36.1.35
- I. C. Gohberg and M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Translations of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, RI, 1969. Translated from the Russian by A. Feinstein. MR 246142, DOI 10.1090/mmono/018
- J. William Helton and Roger E. Howe, Traces of commutators of integral operators, Acta Math. 135 (1975), no. 3-4, 271–305. MR 438188, DOI 10.1007/BF02392022
- Liangying Jiang, Yi Wang, and Jingbo Xia, Toeplitz operators associated with measures and the Dixmier trace on the Hardy space, Complex Anal. Oper. Theory 14 (2020), no. 2, Paper No. 30, 58. MR 4067304, DOI 10.1007/s11785-020-00988-2
- B. E. Johnson and J. P. Williams, The range of a normal derivation, Pacific J. Math. 58 (1975), no. 1, 105–122. MR 380490, DOI 10.2140/pjm.1975.58.105
- Edward Kissin and Victor S. Shulman, Classes of operator-smooth functions. I. Operator-Lipschitz functions, Proc. Edinb. Math. Soc. (2) 48 (2005), no. 1, 151–173. MR 2117717, DOI 10.1017/S0013091503000178
- Edward Kissin and Victor S. Shulman, Classes of operator-smooth functions. III. Stable functions and Fuglede ideals, Proc. Edinb. Math. Soc. (2) 48 (2005), no. 1, 175–197. MR 2117718, DOI 10.1017/S001309150300018X
- Steven Lord, Fedor Sukochev, and Dmitriy Zanin, Singular traces, De Gruyter Studies in Mathematics, vol. 46, De Gruyter, Berlin, 2013. Theory and applications. MR 3099777
- Victor Shulman, Some remarks on the Fuglede-Weiss theorem, Bull. London Math. Soc. 28 (1996), no. 4, 385–392. MR 1384827, DOI 10.1112/blms/28.4.385
- Victor Shulman and Lyudmila Turowska, Operator synthesis. II. Individual synthesis and linear operator equations, J. Reine Angew. Math. 590 (2006), 143–187. MR 2208132, DOI 10.1515/CRELLE.2006.007
- Dan Voiculescu, Some results on norm-ideal perturbations of Hilbert space operators, J. Operator Theory 2 (1979), no. 1, 3–37. MR 553861
- Gary Weiss, The Fuglede commutativity theorem modulo the Hilbert-Schmidt class and generating functions for matrix operators. II, J. Operator Theory 5 (1981), no. 1, 3–16. MR 613042
- Gary Weiss, The Fuglede commutativity theorem modulo operator ideals, Proc. Amer. Math. Soc. 83 (1981), no. 1, 113–118. MR 619994, DOI 10.1090/S0002-9939-1981-0619994-2
- Jingbo Xia, Singular integral operators associated with measures of varying density, J. Operator Theory 49 (2003), no. 2, 311–324. MR 1991741
Bibliographic Information
- Jingbo Xia
- Affiliation: College of Data Science, Jiaxing University, Jiaxing 314001, People’s Republic of China; and Department of Mathematics, State University of New York at Buffalo, Buffalo, New York 14260
- MR Author ID: 215486
- Email: jxia@acsu.buffalo.edu
- Received by editor(s): September 25, 2022
- Received by editor(s) in revised form: December 18, 2022
- Published electronically: October 19, 2023
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 249-269
- MSC (2020): Primary 47B10, 47B47, 47L20
- DOI: https://doi.org/10.1090/tran/9058
- MathSciNet review: 4684592