On homotopy groups of spaces of embeddings of an arc or a circle: the Dax invariant
HTML articles powered by AMS MathViewer
- by Danica Kosanović;
- Trans. Amer. Math. Soc. 377 (2024), 775-805
- DOI: https://doi.org/10.1090/tran/8805
- Published electronically: November 20, 2023
Abstract:
We compute in many classes of examples the first potentially interesting homotopy group of the space of embeddings of either an arc or a circle into a manifold $M$ of dimension $d\geq 4$. In particular, if $M$ is a simply connected 4-manifold the fundamental group of both of these embedding spaces is isomorphic to the second homology group of $M$, answering a question posed by Arone and Szymik. The case $d=3$ gives isotopy invariants of knots in a 3-manifold that are universal of Vassiliev type $\leq 1$, and reduce to Schneiderman’s concordance invariant.References
- Gregory Arone and Markus Szymik, Spaces of knotted circles and exotic smooth structures, Canad. J. Math. 74 (2022), no. 1, 1–23. MR 4379395, DOI 10.4153/S0008414X2000067X
- Ryan Budney, A family of embedding spaces, Groups, homotopy and configuration spaces, Geom. Topol. Monogr., vol. 13, Geom. Topol. Publ., Coventry, 2008, pp. 41–83. MR 2508201, DOI 10.2140/gtm.2008.13.41
- Ryan Budney and David Gabai, Knotted 3-balls in $s^4$ (2019), arXiv:1912.09029
- Jean Cerf, Topologie de certains espaces de plongements, Bull. Soc. Math. France 89 (1961), 227–380 (French). MR 140120, DOI 10.24033/bsmf.1567
- Jean-Pierre Dax, Étude homotopique des espaces de plongements, Ann. Sci. École Norm. Sup. (4) 5 (1972), 303–377 (French). MR 321110, DOI 10.24033/asens.1230
- David Gabai, Self-referential discs and the light bulb lemma, Comment. Math. Helv. 96 (2021), no. 3, 483–513. MR 4344778, DOI 10.4171/cmh/518
- Thomas G. Goodwillie, John R. Klein, and Michael S. Weiss, Spaces of smooth embeddings, disjunction and surgery, Surveys on surgery theory, Vol. 2, Ann. of Math. Stud., vol. 149, Princeton Univ. Press, Princeton, NJ, 2001, pp. 221–284. MR 1818775
- André Haefliger, Differential embeddings of $S^{n}$ in $S^{n+q}$ for $q>2$, Ann. of Math. (2) 83 (1966), 402–436. MR 202151, DOI 10.2307/1970475
- Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. MR 1867354
- Allen Hatcher, Basic 3-manifold topology, 2007. Unpublished book.
- Paul Kirk and Charles Livingston, Type $1$ knot invariants in $3$-manifolds, Pacific J. Math. 183 (1998), no. 2, 305–331. MR 1625970, DOI 10.2140/pjm.1998.183.305
- Danica Kosanović, Knotted families of arcs. In preparation.
- Danica Kosanović, Embedding calculus and grope cobordism of knots (2020), arXiv:2010.05120
- Danica Kosanović and Peter Teichner, A space level light bulb theorem for disks (2020), arXiv:2105.13032
- Riccardo Longoni and Paolo Salvatore, Configuration spaces are not homotopy invariant, Topology 44 (2005), no. 2, 375–380. MR 2114713, DOI 10.1016/j.top.2004.11.002
- Syunji Moriya, Models for knot spaces and atiyah duality (2020), arXiv:2003.03815
- Richard S. Palais, Local triviality of the restriction map for embeddings, Comment. Math. Helv. 34 (1960), 305–312. MR 123338, DOI 10.1007/BF02565942
- Andrew Ranicki, Algebraic and geometric surgery, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2002. Oxford Science Publications. MR 2061749, DOI 10.1093/acprof:oso/9780198509240.001.0001
- Rob Schneiderman, Algebraic linking numbers of knots in 3-manifolds, Algebr. Geom. Topol. 3 (2003), 921–968. MR 2012959, DOI 10.2140/agt.2003.3.921
- Stephen Smale, Regular curves on Riemannian manifolds, Trans. Amer. Math. Soc. 87 (1958), 492–512. MR 94807, DOI 10.1090/S0002-9947-1958-0094807-0
- C. T. C. Wall, Diffeomorphisms of $4$-manifolds, J. London Math. Soc. 39 (1964), 131–140. MR 163323, DOI 10.1112/jlms/s1-39.1.131
Bibliographic Information
- Danica Kosanović
- Affiliation: Department of Mathematics, ETH Zürich, Rämistrasse 101, 8092 Zürich, Switzerland
- ORCID: 0000-0003-3923-4587
- Email: danica.kosanovic@math.ethz.ch
- Received by editor(s): November 22, 2021
- Received by editor(s) in revised form: July 9, 2022, and July 16, 2022
- Published electronically: November 20, 2023
- © Copyright 2023 by the author
- Journal: Trans. Amer. Math. Soc. 377 (2024), 775-805
- MSC (2020): Primary 57R40, 58D10
- DOI: https://doi.org/10.1090/tran/8805
- MathSciNet review: 4688534