Products of normal subsets
HTML articles powered by AMS MathViewer
- by Michael Larsen, Aner Shalev and Pham Huu Tiep;
- Trans. Amer. Math. Soc. 377 (2024), 863-885
- DOI: https://doi.org/10.1090/tran/8960
- Published electronically: November 8, 2023
- HTML | PDF | Request permission
Abstract:
In this paper we consider which families of finite simple groups $G$ have the property that for each $\epsilon > 0$ there exists $N > 0$ such that, if $|G| \ge N$ and $S, T$ are normal subsets of $G$ with at least $\epsilon |G|$ elements each, then every non-trivial element of $G$ is the product of an element of $S$ and an element of $T$.
We show that this holds in a strong and effective sense for finite simple groups of Lie type of bounded rank, while it does not hold for alternating groups or groups of the form $\mathrm {PSL}_n(q)$ where $q$ is fixed and $n\to \infty$. However, in the case $S=T$ and $G$ alternating this holds with an explicit bound on $N$ in terms of $\epsilon$.
Related problems and applications are also discussed. In particular we show that, if $w_1, w_2$ are non-trivial words, $G$ is a finite simple group of Lie type of bounded rank, and for $g \in G$, $P_{w_1(G),w_2(G)}(g)$ denotes the probability that $g_1g_2 = g$ where $g_i \in w_i(G)$ are chosen uniformly and independently, then, as $|G| \to \infty$, the distribution $P_{w_1(G),w_2(G)}$ tends to the uniform distribution on $G$ with respect to the $L^{\infty }$ norm.
References
- Tom M. Apostol, Introduction to analytic number theory, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1976. MR 434929
- László Babai, Nikolay Nikolov, and László Pyber, Product growth and mixing in finite groups, Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, ACM, New York, 2008, pp. 248–257. MR 2485310
- Miklós Bóna, A walk through combinatorics, 4th edition, World Scientific, New Jersey, 2017.
- Emmanuel Breuillard, Ben Green, and Terence Tao, Approximate subgroups of linear groups, Geom. Funct. Anal. 21 (2011), no. 4, 774–819. MR 2827010, DOI 10.1007/s00039-011-0122-y
- P. Deligne, Cohomologie étale, Lecture Notes in Mathematics, vol. 569, Springer-Verlag, Berlin, 1977 (French). Séminaire de géométrie algébrique du Bois-Marie SGA $4\frac {1}{2}$. MR 463174, DOI 10.1007/BFb0091526
- Pierre Deligne, La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math. 52 (1980), 137–252 (French). MR 601520, DOI 10.1007/BF02684780
- Erich W. Ellers and Nikolai Gordeev, On the conjectures of J. Thompson and O. Ore, Trans. Amer. Math. Soc. 350 (1998), no. 9, 3657–3671. MR 1422600, DOI 10.1090/S0002-9947-98-01953-9
- Jason Fulman and Robert Guralnick, Bounds on the number and sizes of conjugacy classes in finite Chevalley groups with applications to derangements, Trans. Amer. Math. Soc. 364 (2012), no. 6, 3023–3070. MR 2888238, DOI 10.1090/S0002-9947-2012-05427-4
- David Gluck, Character value estimates for nonsemisimple elements, J. Algebra 155 (1993), no. 1, 221–237. MR 1206632, DOI 10.1006/jabr.1993.1041
- W. T. Gowers, Quasirandom groups, Combin. Probab. Comput. 17 (2008), no. 3, 363–387. MR 2410393, DOI 10.1017/S0963548307008826
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Inst. Hautes Études Sci. Publ. Math. 24, 1965.
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Inst. Hautes Études Sci. Publ. Math. 28 (1966), 255. MR 217086
- R. M. Guralnick, M. Larsen and P. H. Tiep, Character levels and character bounds for finite classical groups, Invent. Math. (2023), DOI 10.1007/s00222-023-01221-5.
- Robert M. Guralnick, Martin W. Liebeck, E. A. O’Brien, Aner Shalev, and Pham Huu Tiep, Surjective word maps and Burnside’s $p^aq^b$ theorem, Invent. Math. 213 (2018), no. 2, 589–695. MR 3827208, DOI 10.1007/s00222-018-0795-z
- Robert Guralnick and Gunter Malle, Products of conjugacy classes and fixed point spaces, J. Amer. Math. Soc. 25 (2012), no. 1, 77–121. MR 2833479, DOI 10.1090/S0894-0347-2011-00709-1
- Robert M. Guralnick and Pham Huu Tiep, Effective results on the Waring problem for finite simple groups, Amer. J. Math. 137 (2015), no. 5, 1401–1430. MR 3405871, DOI 10.1353/ajm.2015.0035
- H. A. Helfgott, Growth and generation in $\textrm {SL}_2(\Bbb Z/p\Bbb Z)$, Ann. of Math. (2) 167 (2008), no. 2, 601–623. MR 2415382, DOI 10.4007/annals.2008.167.601
- Ehud Hrushovski, Stable group theory and approximate subgroups, J. Amer. Math. Soc. 25 (2012), no. 1, 189–243. MR 2833482, DOI 10.1090/S0894-0347-2011-00708-X
- Michael Larsen, Word maps have large image, Israel J. Math. 139 (2004), 149–156. MR 2041227, DOI 10.1007/BF02787545
- Michael Larsen and Aner Shalev, Word maps and Waring type problems, J. Amer. Math. Soc. 22 (2009), no. 2, 437–466. MR 2476780, DOI 10.1090/S0894-0347-08-00615-2
- Michael Larsen and Aner Shalev, Characters of symmetric groups: sharp bounds and applications, Invent. Math. 174 (2008), no. 3, 645–687. MR 2453603, DOI 10.1007/s00222-008-0145-7
- Michael Larsen, Aner Shalev, and Pham Huu Tiep, The Waring problem for finite simple groups, Ann. of Math. (2) 174 (2011), no. 3, 1885–1950. MR 2846493, DOI 10.4007/annals.2011.174.3.10
- Michael Larsen, Aner Shalev, and Pham Huu Tiep, Probabilistic Waring problems for finite simple groups, Ann. of Math. (2) 190 (2019), no. 2, 561–608. MR 3997129, DOI 10.4007/annals.2019.190.2.3
- Michael Larsen, Aner Shalev, and Pham Huu Tiep, Products of derangements in simple permutation groups, Forum Math. Sigma 10 (2022), Paper No. e83, 30. MR 4487476, DOI 10.1017/fms.2022.69
- Michael Larsen and Pham Huu Tiep, Squares of conjugacy classes in alternating groups, submitted.
- Martin W. Liebeck, E. A. O’Brien, Aner Shalev, and Pham Huu Tiep, The Ore conjecture, J. Eur. Math. Soc. (JEMS) 12 (2010), no. 4, 939–1008. MR 2654085, DOI 10.4171/JEMS/220
- Martin W. Liebeck and Aner Shalev, Fuchsian groups, coverings of Riemann surfaces, subgroup growth, random quotients and random walks, J. Algebra 276 (2004), no. 2, 552–601. MR 2058457, DOI 10.1016/S0021-8693(03)00515-5
- Martin W. Liebeck and Aner Shalev, Fuchsian groups, finite simple groups and representation varieties, Invent. Math. 159 (2005), no. 2, 317–367. MR 2116277, DOI 10.1007/s00222-004-0390-3
- Martin W. Liebeck and Aner Shalev, Character degrees and random walks in finite groups of Lie type, Proc. London Math. Soc. (3) 90 (2005), no. 1, 61–86. MR 2107038, DOI 10.1112/S0024611504014935
- Martin W. Liebeck, Gili Schul, and Aner Shalev, Rapid growth in finite simple groups, Trans. Amer. Math. Soc. 369 (2017), no. 12, 8765–8779. MR 3710643, DOI 10.1090/tran/6935
- Thomas W. Müller and Jan-Christoph Puchta, Character theory of symmetric groups and subgroup growth of surface groups, J. London Math. Soc. (2) 66 (2002), no. 3, 623–640. MR 1934296, DOI 10.1112/S0024610702003599
- Thomas W. Müller and Jan-Christoph Schlage-Puchta, Character theory of symmetric groups, subgroup growth of Fuchsian groups, and random walks, Adv. Math. 213 (2007), no. 2, 919–982. MR 2332616, DOI 10.1016/j.aim.2007.01.016
- N. Nikolov and L. Pyber, Product decompositions of quasirandom groups and a Jordan type theorem, J. Eur. Math. Soc. (JEMS) 13 (2011), no. 4, 1063–1077. MR 2800484, DOI 10.4171/JEMS/275
- László Pyber and Endre Szabó, Growth in finite simple groups of Lie type, J. Amer. Math. Soc. 29 (2016), no. 1, 95–146. MR 3402696, DOI 10.1090/S0894-0347-2014-00821-3
- Dan Segal, Words: notes on verbal width in groups, London Mathematical Society Lecture Note Series, vol. 361, Cambridge University Press, Cambridge, 2009. MR 2547644, DOI 10.1017/CBO9781139107082
- Aner Shalev, Mixing and generation in simple groups, J. Algebra 319 (2008), no. 7, 3075–3086. MR 2397424, DOI 10.1016/j.jalgebra.2007.07.031
- Aner Shalev, Word maps, conjugacy classes, and a noncommutative Waring-type theorem, Ann. of Math. (2) 170 (2009), no. 3, 1383–1416. MR 2600876, DOI 10.4007/annals.2009.170.1383
- Richard P. Stanley, Enumerative combinatorics. Volume 1, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 2012. MR 2868112
- T. Tao, What’s new, https://terrytao.wordpress.com/tag/algebraic-regularity-lemma/.
- Yakov Varshavsky, Lefschetz-Verdier trace formula and a generalization of a theorem of Fujiwara, Geom. Funct. Anal. 17 (2007), no. 1, 271–319. MR 2306659, DOI 10.1007/s00039-007-0596-9
- E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR 1424469, DOI 10.1017/CBO9780511608759
Bibliographic Information
- Michael Larsen
- Affiliation: Department of Mathematics, Indiana University, Bloomington, Indiana 47405
- MR Author ID: 293592
- ORCID: 0000-0002-0487-7622
- Email: mjlarsen@indiana.edu
- Aner Shalev
- Affiliation: Einstein Institute of Mathematics, Hebrew University, Givat Ram, Jerusalem 91904, Israel
- MR Author ID: 228986
- ORCID: 0000-0001-9428-2958
- Email: shalev@math.huji.ac.il
- Pham Huu Tiep
- Affiliation: Department of Mathematics, Rutgers University, Piscataway, New Jersey 08854
- MR Author ID: 230310
- ORCID: 0000-0003-2913-5921
- Email: tiep@math.rutgers.edu
- Received by editor(s): December 27, 2021
- Received by editor(s) in revised form: March 10, 2023
- Published electronically: November 8, 2023
- Additional Notes: The first author was partially supported by the NSF (grants DMS-1702152 and DMS-2001349), and the Simons Foundation. The second author was partially supported by ISF grant 686/17 and the Vinik Chair of mathematics which he holds. The third author was partially supported by the NSF (grants DMS-1840702 and DMS-2200850), the Simons Foundation, the Joshua Barlaz Chair in Mathematics, and the Charles Simonyi Endowment at the Institute for Advanced Study (Princeton). All three authors were partially supported by BSF grants 2016072 and 2020037.
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 863-885
- MSC (2020): Primary 20D06; Secondary 20F69, 20G40, 20P05
- DOI: https://doi.org/10.1090/tran/8960
- MathSciNet review: 4688537