The minimal number of critical points of a smooth function on a closed manifold and the ball category
HTML articles powered by AMS MathViewer
- by Rustam Sadykov and Stanislav Trunov;
- Trans. Amer. Math. Soc. 377 (2024), 1219-1245
- DOI: https://doi.org/10.1090/tran/9047
- Published electronically: October 3, 2023
- HTML | PDF
Abstract:
Introduced by Seifert and Threlfall [Variationsrechnung im Grossen, Hamburger Math Einzelschr., Heft 24, Teubner, Leipzig-Berlin, 1938], cylindrical neighborhoods of isolated critical points of smooth functions is an essential tool in the Lusternik-Schnirelmann theory. We conjecture that every isolated critical point of a smooth function admits a cylindrical ball neighborhood. We show that the conjecture is true for cone-like critical points, Cornea reasonable critical points, and critical points that satisfy the Rothe $H$ hypothesis. In particular, the conjecture holds true at least for those critical points that are not infinitely degenerate.
If, contrary to the assertion of the conjecture, there are isolated critical points that do not admit cylindrical ball neighborhoods, then we say that such critical points are exotic. We prove a Lusternik-Schnirelmann type theorem asserting that the minimal number of critical points of smooth functions without exotic critical points on a closed manifold of dimension at least $6$ is the same as the minimal number of elements in a Singhof-Takens filling of $M$ by smooth balls with corners.
References
- Th. Bröcker, Differentiable germs and catastrophes, London Mathematical Society Lecture Note Series, No. 17, Cambridge University Press, Cambridge-New York-Melbourne, 1975. Translated from the German, last chapter and bibliography by L. Lander. MR 494220, DOI 10.1017/CBO9781107325418
- Hans Brodersen, A note on infinite determinacy of smooth map germs, Bull. London Math. Soc. 13 (1981), no. 5, 397–402. MR 631095, DOI 10.1112/blms/13.5.397
- Morton Brown, The monotone union of open $n$-cells is an open $n$-cell, Proc. Amer. Math. Soc. 12 (1961), 812–814. MR 126835, DOI 10.1090/S0002-9939-1961-0126835-6
- Octavian Cornea, Cone-decompositions and degenerate critical points, Proc. London Math. Soc. (3) 77 (1998), no. 2, 437–461. MR 1635165, DOI 10.1112/S0024611598000525
- Octav Cornea, Gregory Lupton, John Oprea, and Daniel Tanré, Lusternik-Schnirelmann category, Mathematical Surveys and Monographs, vol. 103, American Mathematical Society, Providence, RI, 2003. MR 1990857, DOI 10.1090/surv/103
- E. N. Dancer, Degenerate critical points, homotopy indices and Morse inequalities, J. Reine Angew. Math. 350 (1984), 1–22. MR 743531, DOI 10.1515/crll.1984.350.1
- Louis Funar, Maps with finitely many critical points into high dimensional manifolds, Rev. Mat. Complut. 34 (2021), no. 2, 585–595. MR 4254083, DOI 10.1007/s13163-020-00362-y
- Caius Gavrila, The Lusternik-Schnirelmann theorem for the ball category, Lusternik-Schnirelmann category and related topics (South Hadley, MA, 2001) Contemp. Math., vol. 316, Amer. Math. Soc., Providence, RI, 2002, pp. 113–119. MR 1962157, DOI 10.1090/conm/316/05499
- David Gay and Robion Kirby, Trisecting 4-manifolds, Geom. Topol. 20 (2016), no. 6, 3097–3132. MR 3590351, DOI 10.2140/gt.2016.20.3097
- Christopher G. Gibson, Klaus Wirthmüller, Andrew A. du Plessis, and Eduard J. N. Looijenga, Topological stability of smooth mappings, Lecture Notes in Mathematics, Vol. 552, Springer-Verlag, Berlin-New York, 1976. MR 436203, DOI 10.1007/BFb0095244
- J. C. Gómez-Larrañaga and F. González-Acuña, Lusternik-Schnirel′mann category of $3$-manifolds, Topology 31 (1992), no. 4, 791–800. MR 1191380, DOI 10.1016/0040-9383(92)90009-7
- Henry C. King, Topological type of isolated critical points, Ann. of Math. (2) 107 (1978), no. 2, 385–397. MR 494153, DOI 10.2307/1971121
- Henry C. King, Topology of isolated critical points of functions on singular spaces, Stratifications, singularities and differential equations, II (Marseille, 1990; Honolulu, HI, 1990) Travaux en Cours, vol. 55, Hermann, Paris, 1997, pp. 63–72. MR 1473242
- Wojciech Kucharz, Jets suffisants et fonctions de détermination finie (cas $\textbf {R}^{n}\rightarrow \textbf {R}^{p},$ $p\geq 1)$, C. R. Acad. Sci. Paris Sér. A-B 284 (1977), no. 15, A877–A879. MR 433495
- L. Lusternik and L. Schnirelmann, Methodes Topologiques dans les Problemes Variationels, Herman, Paris, 1934.
- J. Milnor, Differential topology, Lectures on Modern Mathematics, Vol. II, Wiley, New York-London-Sydney, 1964, pp. 165–183. MR 178474
- John Milnor, Lectures on the $h$-cobordism theorem, Princeton University Press, Princeton, NJ, 1965. Notes by L. Siebenmann and J. Sondow. MR 190942, DOI 10.1515/9781400878055
- John Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies, No. 61, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1968. MR 239612
- Nguyễn Tụ’ Cu’ò’ng, Nguyễn H uu Đûc, Nguyễn Sĩ Minh, and Hà Huy Vui, Sur les germes de fonctions infiniment déterminés, C. R. Acad. Sci. Paris Sér. A-B 285 (1977), no. 16, A1045–A1048 (French, with English summary). MR 649266
- Charles C. Pugh, Smoothing a topological manifold, Topology Appl. 124 (2002), no. 3, 487–503. MR 1930659, DOI 10.1016/S0166-8641(01)00255-3
- E. H. Rothe, A relation between the type numbers of a critical point and the index of the corresponding field of gradient vectors. Erhard Schmidt zum 75. Geburtstag gewidmet. Mathematische Nachrichten, 4 (1950), 12-27.
- Erich H. Rothe, A remark on isolated critical points, Amer. J. Math. 74 (1952), 253–263. MR 46573, DOI 10.2307/2372083
- G. Seifert and B. Threlfall, Variationsrechnung im Grossen, Hamburger Math Einzelschr., Heft 24, Teubner, Leipzig-Berlin, 1938.
- Wilhelm Singhof, Minimal coverings of manifolds with balls, Manuscripta Math. 29 (1979), no. 2-4, 385–415. MR 545050, DOI 10.1007/BF01303636
- John R. Stallings, Polyhedral homotopy-spheres, Bull. Amer. Math. Soc. 66 (1960), 485–488. MR 124905, DOI 10.1090/S0002-9904-1960-10511-3
- Richard Stong, Simply-connected $4$-manifolds with a given boundary, Topology Appl. 52 (1993), no. 2, 161–167. MR 1241191, DOI 10.1016/0166-8641(93)90034-B
- Floris Takens, Isolated critical points of $C^{\infty }$ and $C^{\omega }$ functions, Indag. Math. 29 (1967), 238–243. Nederl. Akad. Wetensch. Proc. Ser. A 70. MR 211419, DOI 10.1016/S1385-7258(67)50038-0
- Floris Takens, The minimal number of critical points of a function on a compact manifold and the Lusternik-Schnirelman category, Invent. Math. 6 (1968), 197–244. MR 236942, DOI 10.1007/BF01404825
- C. T. C. Wall, Finite determinacy of smooth map-germs, Bull. London Math. Soc. 13 (1981), no. 6, 481–539. MR 634595, DOI 10.1112/blms/13.6.481
- Leslie C. Wilson, Infinitely determined map germs, Canadian J. Math. 33 (1981), no. 3, 671–684. MR 627650, DOI 10.4153/CJM-1981-053-3
- R. Sadykov, S. Trunov, Isolated singularities of hypersurfaces, arXiv:2207.10072.
- Leslie C. Wilson, Mapgerms infinitely determined with respect to right-left equivalence, Pacific J. Math. 102 (1982), no. 1, 235–245. MR 682054, DOI 10.2140/pjm.1982.102.235
Bibliographic Information
- Rustam Sadykov
- Affiliation: Department of Mathematics, Kansas State University, Manhattan, Kansas
- MR Author ID: 687348
- Email: sadykov@ksu.edu
- Stanislav Trunov
- Affiliation: Department of Mathematics, Kansas State University, Manhattan, Kansas
- MR Author ID: 1356321
- Email: stastrunov@ksu.edu
- Received by editor(s): August 21, 2022
- Received by editor(s) in revised form: June 15, 2023, and July 25, 2023
- Published electronically: October 3, 2023
- © Copyright 2023 by the authors
- Journal: Trans. Amer. Math. Soc. 377 (2024), 1219-1245
- MSC (2020): Primary 55M30, 57R70
- DOI: https://doi.org/10.1090/tran/9047
- MathSciNet review: 4688547