Fusion products of twisted modules in permutation orbifolds
HTML articles powered by AMS MathViewer
- by Chongying Dong, Haisheng Li, Feng Xu and Nina Yu
- Trans. Amer. Math. Soc. 377 (2024), 1717-1760
- DOI: https://doi.org/10.1090/tran/8959
- Published electronically: December 12, 2023
- HTML | PDF | Request permission
Abstract:
Let $V$ be a vertex operator algebra, $k$ a positive integer and $\sigma$ a permutation automorphism of the vertex operator algebra $V^{\otimes k}$. In this paper, we determine the fusion product of any $V^{\otimes k}$-module with any $\sigma$-twisted $V^{\otimes k}$-module.References
- Toshiyuki Abe, $C_2$-cofiniteness of the 2-cycle permutation orbifold models of minimal Virasoro vertex operator algebras, Comm. Math. Phys. 303 (2011), no. 3, 825–844. MR 2786218, DOI 10.1007/s00220-011-1209-x
- Toshiyuki Abe, $C_2$-cofiniteness of 2-cyclic permutation orbifold models, Comm. Math. Phys. 317 (2013), no. 2, 425–445. MR 3010190, DOI 10.1007/s00220-012-1618-5
- Toshiyuki Abe, Geoffrey Buhl, and Chongying Dong, Rationality, regularity, and $C_2$-cofiniteness, Trans. Amer. Math. Soc. 356 (2004), no. 8, 3391–3402. MR 2052955, DOI 10.1090/S0002-9947-03-03413-5
- Toshiyuki Abe, Chongying Dong, and Haisheng Li, Fusion rules for the vertex operator algebra $M(1)$ and $V^+_L$, Comm. Math. Phys. 253 (2005), no. 1, 171–219. MR 2105641, DOI 10.1007/s00220-004-1132-5
- Chunrui Ai, Chongying Dong, Xiangyu Jiao, and Li Ren, The irreducible modules and fusion rules for the parafermion vertex operator algebras, Trans. Amer. Math. Soc. 370 (2018), no. 8, 5963–5981. MR 3812115, DOI 10.1090/tran/7302
- P. Bantay, Characters and modular properties of permutation orbifolds, Phys. Lett. B 419 (1998), no. 1-4, 175–178. MR 1620424, DOI 10.1016/S0370-2693(97)01464-0
- Bojko Bakalov and Alexander Kirillov Jr., Lectures on tensor categories and modular functors, University Lecture Series, vol. 21, American Mathematical Society, Providence, RI, 2001. MR 1797619, DOI 10.1090/ulect/021
- Katrina Barron, Chongying Dong, and Geoffrey Mason, Twisted sectors for tensor product vertex operator algebras associated to permutation groups, Comm. Math. Phys. 227 (2002), no. 2, 349–384. MR 1903649, DOI 10.1007/s002200200633
- Richard E. Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster, Proc. Nat. Acad. Sci. U.S.A. 83 (1986), no. 10, 3068–3071. MR 843307, DOI 10.1073/pnas.83.10.3068
- Katrina Barron, Yi-Zhi Huang, and James Lepowsky, An equivalence of two constructions of permutation-twisted modules for lattice vertex operator algebras, J. Pure Appl. Algebra 210 (2007), no. 3, 797–826. MR 2324608, DOI 10.1016/j.jpaa.2006.12.005
- L. Borisov, M. B. Halpern, and C. Schweigert, Systematic approach to cyclic orbifolds, Internat. J. Modern Phys. A 13 (1998), no. 1, 125–168. MR 1606821, DOI 10.1142/S0217751X98000044
- S. Carnahan and M. Miyamoto, Regularity of fixed-point vertex operator subalgebras, arXiv:1603.05645.
- T. Creutzig, S. Kanade, and R. McRae, Tensor categories for vertex operator superalgebra extensions, arXiv:1705.05017.
- Chongying Dong, Xiangyu Jiao, and Feng Xu, Quantum dimensions and quantum Galois theory, Trans. Amer. Math. Soc. 365 (2013), no. 12, 6441–6469. MR 3105758, DOI 10.1090/S0002-9947-2013-05863-1
- Chongying Dong and James Lepowsky, Generalized vertex algebras and relative vertex operators, Progress in Mathematics, vol. 112, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1233387, DOI 10.1007/978-1-4612-0353-7
- Chongying Dong, Haisheng Li, and Geoffrey Mason, Simple currents and extensions of vertex operator algebras, Comm. Math. Phys. 180 (1996), no. 3, 671–707. MR 1408523, DOI 10.1007/BF02099628
- Chongying Dong, Haisheng Li, and Geoffrey Mason, Twisted representations of vertex operator algebras, Math. Ann. 310 (1998), no. 3, 571–600. MR 1615132, DOI 10.1007/s002080050161
- Chongying Dong, Haisheng Li, and Geoffrey Mason, Modular-invariance of trace functions in orbifold theory and generalized Moonshine, Comm. Math. Phys. 214 (2000), no. 1, 1–56. MR 1794264, DOI 10.1007/s002200000242
- B. Doyon, J. Lepowsky, and A. Milas, Twisted modules for vertex operator algebras and Bernoulli polynomials, Int. Math. Res. Not. 44 (2003), 2391–2408. MR 2003829, DOI 10.1155/S1073792803130863
- Alexei Davydov, Michael Müger, Dmitri Nikshych, and Victor Ostrik, The Witt group of non-degenerate braided fusion categories, J. Reine Angew. Math. 677 (2013), 135–177. MR 3039775, DOI 10.1515/crelle.2012.014
- Chongying Dong, Li Ren, and Feng Xu, On orbifold theory, Adv. Math. 321 (2017), 1–30. MR 3715704, DOI 10.1016/j.aim.2017.09.032
- Chongying Dong, Feng Xu, and Nina Yu, 2-cyclic permutations of lattice vertex operator algebras, Proc. Amer. Math. Soc. 144 (2016), no. 8, 3207–3220. MR 3503690, DOI 10.1090/proc/12966
- Chongying Dong, Feng Xu, and Nina Yu, 2-permutations of lattice vertex operator algebras: higher rank, J. Algebra 476 (2017), 1–25. MR 3608142, DOI 10.1016/j.jalgebra.2016.12.008
- Chongying Dong, Feng Xu, and Nina Yu, The 3-permutation orbifold of a lattice vertex operator algebra, J. Pure Appl. Algebra 222 (2018), no. 6, 1316–1336. MR 3754427, DOI 10.1016/j.jpaa.2017.06.020
- Pavel Etingof, Dmitri Nikshych, and Viktor Ostrik, On fusion categories, Ann. of Math. (2) 162 (2005), no. 2, 581–642. MR 2183279, DOI 10.4007/annals.2005.162.581
- Igor B. Frenkel, Yi-Zhi Huang, and James Lepowsky, On axiomatic approaches to vertex operator algebras and modules, Mem. Amer. Math. Soc. 104 (1993), no. 494, viii+64. MR 1142494, DOI 10.1090/memo/0494
- Igor Frenkel, James Lepowsky, and Arne Meurman, Vertex operator algebras and the Monster, Pure and Applied Mathematics, vol. 134, Academic Press, Inc., Boston, MA, 1988. MR 996026
- Yi-Zhi Huang, A theory of tensor products for module categories for a vertex operator algebra. IV, J. Pure Appl. Algebra 100 (1995), no. 1-3, 173–216. MR 1344849, DOI 10.1016/0022-4049(95)00050-7
- Yi-Zhi Huang, Rigidity and modularity of vertex tensor categories, Commun. Contemp. Math. 10 (2008), no. suppl. 1, 871–911. MR 2468370, DOI 10.1142/S0219199708003083
- Yi-Zhi Huang, Alexander Kirillov Jr., and James Lepowsky, Braided tensor categories and extensions of vertex operator algebras, Comm. Math. Phys. 337 (2015), no. 3, 1143–1159. MR 3339173, DOI 10.1007/s00220-015-2292-1
- Y.-Z. Huang and J. Lepowsky, A theory of tensor products for module categories for a vertex operator algebra. I, II, Selecta Math. (N.S.) 1 (1995), no. 4, 699–756, 757–786. MR 1383584, DOI 10.1007/BF01587908
- Yi-Zhi Huang and James Lepowsky, A theory of tensor products for module categories for a vertex operator algebra. III, J. Pure Appl. Algebra 100 (1995), no. 1-3, 141–171. MR 1344848, DOI 10.1016/0022-4049(95)00049-3
- A. Kirillov Jr., Modular categories and orbifold models II, 2001, arXiv:math/0110221.
- Alexander Kirillov Jr., Modular categories and orbifold models, Comm. Math. Phys. 229 (2002), no. 2, 309–335. MR 1923177, DOI 10.1007/s002200200650
- Martin Karel and Haisheng Li, Certain generating subspaces for vertex operator algebras, J. Algebra 217 (1999), no. 2, 393–421. MR 1700507, DOI 10.1006/jabr.1998.7838
- Victor G. Kac, Roberto Longo, and Feng Xu, Solitons in affine and permutation orbifolds, Comm. Math. Phys. 253 (2005), no. 3, 723–764. MR 2116735, DOI 10.1007/s00220-004-1160-1
- Alexander Kirillov Jr. and Viktor Ostrik, On a $q$-analogue of the McKay correspondence and the ADE classification of $\mathfrak {sl}_2$ conformal field theories, Adv. Math. 171 (2002), no. 2, 183–227. MR 1936496, DOI 10.1006/aima.2002.2072
- J. Lepowsky, Calculus of twisted vertex operators, Proc. Nat. Acad. Sci. U.S.A. 82 (1985), no. 24, 8295–8299. MR 820716, DOI 10.1073/pnas.82.24.8295
- Hai Sheng Li, Symmetric invariant bilinear forms on vertex operator algebras, J. Pure Appl. Algebra 96 (1994), no. 3, 279–297. MR 1303287, DOI 10.1016/0022-4049(94)90104-X
- Hai-Sheng Li, Local systems of twisted vertex operators, vertex operator superalgebras and twisted modules, Moonshine, the Monster, and related topics (South Hadley, MA, 1994) Contemp. Math., vol. 193, Amer. Math. Soc., Providence, RI, 1996, pp. 203–236. MR 1372724, DOI 10.1090/conm/193/02373
- Haisheng Li, An analogue of the Hom functor and a generalized nuclear democracy theorem, Duke Math. J. 93 (1998), no. 1, 73–114. MR 1620083, DOI 10.1215/S0012-7094-98-09303-6
- Haisheng Li, Some finiteness properties of regular vertex operator algebras, J. Algebra 212 (1999), no. 2, 495–514. MR 1676852, DOI 10.1006/jabr.1998.7654
- Haisheng Li, Nonlocal vertex algebras generated by formal vertex operators, Selecta Math. (N.S.) 11 (2005), no. 3-4, 349–397. MR 2215259, DOI 10.1007/s00029-006-0017-1
- James Lepowsky and Haisheng Li, Introduction to vertex operator algebras and their representations, Progress in Mathematics, vol. 227, Birkhäuser Boston, Inc., Boston, MA, 2004. MR 2023933, DOI 10.1007/978-0-8176-8186-9
- Haisheng Li, Shaobin Tan, and Qing Wang, Twisted modules for quantum vertex algebras, J. Pure Appl. Algebra 214 (2010), no. 3, 201–220. MR 2559692, DOI 10.1016/j.jpaa.2009.05.006
- Masahiko Miyamoto, A $\Bbb Z_3$-orbifold theory of lattice vertex operator algebra and $\Bbb Z_3$-orbifold constructions, Symmetries, integrable systems and representations, Springer Proc. Math. Stat., vol. 40, Springer, Heidelberg, 2013, pp. 319–344. MR 3077690, DOI 10.1007/978-1-4471-4863-0_{1}3
- Masahiko Miyamoto, $C_2$-cofiniteness of cyclic-orbifold models, Comm. Math. Phys. 335 (2015), no. 3, 1279–1286. MR 3320313, DOI 10.1007/s00220-014-2252-1
- Xiaoping Xu, Intertwining operators for twisted modules of a colored vertex operator superalgebra, J. Algebra 175 (1995), no. 1, 241–273. MR 1338977, DOI 10.1006/jabr.1995.1185
- Yongchang Zhu, Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc. 9 (1996), no. 1, 237–302. MR 1317233, DOI 10.1090/S0894-0347-96-00182-8
Bibliographic Information
- Chongying Dong
- Affiliation: Department of Mathematics, University of California, Santa Cruz, California 95064
- MR Author ID: 316207
- Email: dong@ucsc.edu
- Haisheng Li
- Affiliation: Department of Mathematical Sciences, Rutgers University, Camden, New Jersey 08102
- MR Author ID: 256893
- ORCID: 0000-0003-3710-616X
- Email: hli@camden.rutgers.edu
- Feng Xu
- Affiliation: Department of Mathematics, Huzhou University, Huzhou 313000, People’s Republic of China; and Department of Mathematics, University of California, Riverside, California 92521
- MR Author ID: 358033
- Email: xufeng@math.ucr.edu
- Nina Yu
- Affiliation: School of Mathematical Sciences, Xiamen University, Fujian 361005, People’s Republic of China
- MR Author ID: 830351
- ORCID: 0000-0003-4193-438X
- Email: ninayu@xmu.edu.cn
- Received by editor(s): August 5, 2021
- Received by editor(s) in revised form: March 9, 2023
- Published electronically: December 12, 2023
- Additional Notes: This work was supported by the Simons Foundation 634104
This work was supported by National Natural Science Foundation of China 11971396, 12131018 and 12161141001 - © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 1717-1760
- MSC (2020): Primary 17B69
- DOI: https://doi.org/10.1090/tran/8959