A Lehmer-type height lower bound for abelian surfaces over function fields
HTML articles powered by AMS MathViewer
- by Nicole R. Looper and Joseph H. Silverman;
- Trans. Amer. Math. Soc. 377 (2024), 1915-1955
- DOI: https://doi.org/10.1090/tran/9024
- Published electronically: December 12, 2023
- PDF | Request permission
Abstract:
Let $K$ be an 1-dimensional function field over an algebraically closed field of characteristic $0$, and let $A/K$ be an abelian surface. Under mild assumptions, we prove a Lehmer-type lower bound for points in $A(\overline {K})$. More precisely, we prove that there are constants $C_1,C_2>0$ such that the normalized Bernoulli-part of the canonical height is bounded below by \[ \hat {h}_A^{\mathbb {B}}(P) \ge C_1\bigl [K(P):K\bigr ]^{-2} \] for all points $P\in {A(\overline {K})}$ whose height satisfies $0<\hat {h}_A(P)\le {C_2}$.References
- Francesco Amoroso and Sinnou David, Le problème de Lehmer en dimension supérieure, J. Reine Angew. Math. 513 (1999), 145–179 (French, with English summary). MR 1713323, DOI 10.1515/crll.1999.058
- Francesco Amoroso and Roberto Dvornicich, A lower bound for the height in abelian extensions, J. Number Theory 80 (2000), no. 2, 260–272. MR 1740514, DOI 10.1006/jnth.1999.2451
- M. Anderson and David W. Masser, Lower bounds for heights on elliptic curves, Math. Z. 174 (1980), no. 1, 23–34. MR 591611, DOI 10.1007/BF01215078
- Tom M. Apostol, Introduction to analytic number theory, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1976. MR 434929
- Matthew H. Baker, Lower bounds for the canonical height on elliptic curves over abelian extensions, Int. Math. Res. Not. 29 (2003), 1571–1589. MR 1979685, DOI 10.1155/S1073792803212083
- Matthew H. Baker and Joseph H. Silverman, A lower bound for the canonical height on abelian varieties over abelian extensions, Math. Res. Lett. 11 (2004), no. 2-3, 377–396. MR 2067482, DOI 10.4310/MRL.2004.v11.n3.a10
- Christina Birkenhake and Herbert Lange, Complex abelian varieties, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 302, Springer-Verlag, Berlin, 2004. MR 2062673, DOI 10.1007/978-3-662-06307-1
- P. E. Blanksby and H. L. Montgomery, Algebraic integers near the unit circle, Acta Arith. 18 (1971), 355–369. MR 296021, DOI 10.4064/aa-18-1-355-369
- John Boxall, Une propriété des hauteurs locales de Néron-Tate sur les variétés abéliennes, J. Théor. Nombres Bordeaux 7 (1995), no. 1, 111–119 (French). Les Dix-huitièmes Journées Arithmétiques (Bordeaux, 1993). MR 1413570, DOI 10.5802/jtnb.134
- María Carrizosa, Petits points et multiplication complexe, Int. Math. Res. Not. IMRN 16 (2009), 3016–3097 (French). MR 2533796, DOI 10.1093/imrn/rnp042
- Sinnou David, Fonctions thêta et points de torsion des variétés abéliennes, Compositio Math. 78 (1991), no. 2, 121–160 (French). MR 1104784
- Sinnou David, Minorations de hauteurs sur les variétés abéliennes, Bull. Soc. Math. France 121 (1993), no. 4, 509–544 (French, with English and French summaries). MR 1254751, DOI 10.24033/bsmf.2218
- Sinnou David and Marc Hindry, Minoration de la hauteur de Néron-Tate sur les variétés abéliennes de type C. M, J. Reine Angew. Math. 529 (2000), 1–74 (French, with English summary). MR 1799933, DOI 10.1515/crll.2000.096
- Sinnou David and Patrice Philippon, Minorations des hauteurs normalisées des sous-variétés de variétés abéliennes, Number theory (Tiruchirapalli, 1996) Contemp. Math., vol. 210, Amer. Math. Soc., Providence, RI, 1998, pp. 333–364 (French, with English and French summaries). MR 1478502, DOI 10.1090/conm/210/02795
- Sinnou David and Patrice Philippon, Minorations des hauteurs normalisées des sous-variétés de variétés abeliennes. II, Comment. Math. Helv. 77 (2002), no. 4, 639–700 (French, with English and French summaries). MR 1949109, DOI 10.1007/PL00012437
- Sinnou David and Patrice Philippon, Minorations des hauteurs normalisées des sous-variétés des puissances des courbes elliptiques, Int. Math. Res. Pap. IMRP 3 (2007), Art. ID rpm006, 113 (French). MR 2355454
- E. Dobrowolski, On a question of Lehmer and the number of irreducible factors of a polynomial, Acta Arith. 34 (1979), no. 4, 391–401. MR 543210, DOI 10.4064/aa-34-4-391-401
- Aurélien Galateau and Valéry Mahé, Some consequences of Masser’s counting theorem on elliptic curves, Math. Z. 285 (2017), no. 1-2, 613–629. MR 3598828, DOI 10.1007/s00209-016-1728-4
- Éric Gaudron and Gaël Rémond, Nombre de petits points sur une variété abélienne, Preprint, Décembre 2022, https://lmbp.uca.fr/~gaudron/art21.pdf.
- Marc Hindry, Sur les hauteurs locales de Néron sur les variétés abéliennes, Prépublications Mathématiques de l’U.R.A. 212 ‘Théories Géométriques’, No. 51, Université Paris 7, 1993, https://webusers.imj-prg.fr/~marc.hindry/Neron.pdf.
- M. Hindry and J. H. Silverman, The canonical height and integral points on elliptic curves, Invent. Math. 93 (1988), no. 2, 419–450. MR 948108, DOI 10.1007/BF01394340
- Marc Hindry and Joseph H. Silverman, On Lehmer’s conjecture for elliptic curves, Séminaire de Théorie des Nombres, Paris 1988–1989, Progr. Math., vol. 91, Birkhäuser Boston, Boston, MA, 1990, pp. 103–116. MR 1104702
- Michel Laurent, Minoration de la hauteur de Néron-Tate, Seminar on number theory, Paris 1981–82 (Paris, 1981/1982) Progr. Math., vol. 38, Birkhäuser Boston, Boston, MA, 1983, pp. 137–151 (French). MR 729165
- D. H. Lehmer, Factorization of certain cyclotomic functions, Ann. of Math. (2) 34 (1933), no. 3, 461–479. MR 1503118, DOI 10.2307/1968172
- D. W. Masser, Small values of the quadratic part of the Néron-Tate height on an abelian variety, Compositio Math. 53 (1984), no. 2, 153–170. MR 766295
- D. W. Masser, Counting points of small height on elliptic curves, Bull. Soc. Math. France 117 (1989), no. 2, 247–265 (English, with French summary). MR 1015810, DOI 10.24033/bsmf.2120
- David Masser, Unpublished letter to Daniel Bertrand, 17th Nov. 1986.
- D. Mumford, On the equations defining abelian varieties. I, Invent. Math. 1 (1966), 287–354. MR 204427, DOI 10.1007/BF01389737
- Fabien Pazuki, Minoration de la hauteur de Néron-Tate sur les surfaces abéliennes, Manuscripta Math. 142 (2013), no. 1-2, 61–99 (French, with English and French summaries). MR 3081000, DOI 10.1007/s00229-012-0593-7
- J. Pesenti and L. Szpiro, Inégalité du discriminant pour les pinceaux elliptiques à réductions quelconques, Compositio Math. 120 (2000), no. 1, 83–117 (French, with English and French summaries). MR 1738213, DOI 10.1023/A:1001736823128
- Nicolas Ratazzi, Intersection de courbes et de sous-groupes et problèmes de minoration de hauteur dans les variétés abéliennes C.M, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 5, 1575–1633 (French, with English and French summaries). MR 2445828, DOI 10.5802/aif.2393
- A. Schinzel, On the product of the conjugates outside the unit circle of an algebraic number, Acta Arith. 24 (1973), 385–399. MR 360515, DOI 10.4064/aa-24-4-385-399
- A. Schinzel, Addendum to the paper: “On the product of the conjugates outside the unit circle of an algebraic number” (Acta Arith. 24 (1973), 385–399), Acta Arith. 26 (1974/75), no. 3, 329–331. MR 371853, DOI 10.4064/aa-26-3-329-331
- A. Schinzel and H. Zassenhaus, A refinement of two theorems of Kronecker, Michigan Math. J. 12 (1965), 81–85. MR 175882, DOI 10.1307/mmj/1028999247
- Joseph H. Silverman, Lower bounds for height functions, Duke Math. J. 51 (1984), no. 2, 395–403. MR 747871, DOI 10.1215/S0012-7094-84-05118-4
- Joseph H. Silverman, A lower bound for the canonical height on elliptic curves over abelian extensions, J. Number Theory 104 (2004), no. 2, 353–372. MR 2029512, DOI 10.1016/j.jnt.2003.07.001
- C. J. Smyth, On the product of the conjugates outside the unit circle of an algebraic integer, Bull. London Math. Soc. 3 (1971), 169–175. MR 289451, DOI 10.1112/blms/3.2.169
- Cameron L. Stewart, Algebraic integers whose conjugates lie near the unit circle, Bull. Soc. Math. France 106 (1978), no. 2, 169–176 (English, with French summary). MR 507748, DOI 10.24033/bsmf.1868
- Emmanuel Ullmo, Positivité et discrétion des points algébriques des courbes, Ann. of Math. (2) 147 (1998), no. 1, 167–179 (French). MR 1609514, DOI 10.2307/120987
- Jean-Louis Verger-Gaugry. A survey on the conjecture of Lehmer and the conjecture of Schinzel–Zassenhaus, 2019. hal.archives-ouvertes.fr/hal-02315014.
- Annette Werner, Local heights on Mumford curves, Math. Ann. 306 (1996), no. 4, 819–831. MR 1418354, DOI 10.1007/BF01445278
- Annette Werner, Local heights on abelian varieties with split multiplicative reduction, Compositio Math. 107 (1997), no. 3, 289–317. MR 1458753, DOI 10.1023/A:1000139010486
- Annette Werner, Local heights on abelian varieties and rigid analytic uniformization, Doc. Math. 3 (1998), 301–319. MR 1662481, DOI 10.4171/dm/47
- Shou-Wu Zhang, Equidistribution of small points on abelian varieties, Ann. of Math. (2) 147 (1998), no. 1, 159–165. MR 1609518, DOI 10.2307/120986
- Shouwu Zhang, Lower bounds for heights on elliptic curves, Unpublished, June 1989.
Bibliographic Information
- Nicole R. Looper
- Affiliation: Department of Mathematics, Statistics, and Computer Science, University of Illinois Chicago, Chicago, Illinois 60607-7045
- MR Author ID: 1067313
- Email: nrlooper@uic.edu
- Joseph H. Silverman
- Affiliation: Department of Mathematics, Box 1917, Brown University, Providence, Rhode Island 02912
- MR Author ID: 162205
- ORCID: 0000-0003-3887-3248
- Email: joseph_silverman@brown.edu
- Received by editor(s): October 7, 2021
- Received by editor(s) in revised form: April 18, 2023, and July 5, 2023
- Published electronically: December 12, 2023
- Additional Notes: The first author was supported by NSF grant DMS-1803021. The second author was partially supported by Simons Collaboration Grant $\# 712332$.
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 1915-1955
- MSC (2020): Primary 11G10, 11G50, 14K15; Secondary 14K25, 37P30
- DOI: https://doi.org/10.1090/tran/9024
- MathSciNet review: 4744745