Strong convergence of parabolic rate $1$ of discretisations of stochastic Allen-Cahn-type equations
HTML articles powered by AMS MathViewer
- by Máté Gerencsér and Harprit Singh;
- Trans. Amer. Math. Soc. 377 (2024), 1851-1881
- DOI: https://doi.org/10.1090/tran/9029
- Published electronically: December 12, 2023
- HTML | PDF
Abstract:
Consider the approximation of stochastic Allen-Cahn-type equations (i.e. $1+1$-dimensional space-time white noise-driven stochastic PDEs with polynomial nonlinearities $F$ such that $F(\pm \infty )=\mp \infty$) by a fully discrete space-time explicit finite difference scheme. The consensus in literature, supported by rigorous lower bounds, is that strong convergence rate $1/2$ with respect to the parabolic grid meshsize is expected to be optimal. We show that one can reach almost sure convergence rate arbitrarily close to (and no better than) $1$ when measuring the error in appropriate negative Besov norms, by temporarily ‘pretending’ that the SPDE is singular.References
- Aureli Alabert and István Gyöngy, On numerical approximation of stochastic Burgers’ equation, From stochastic calculus to mathematical finance, Springer, Berlin, 2006, pp. 1–15. MR 2233532, DOI 10.1007/978-3-540-30788-4_{1}
- Sebastian Becker, Benjamin Gess, Arnulf Jentzen, and Peter E. Kloeden, Strong convergence rates for explicit space-time discrete numerical approximations of stochastic Allen-Cahn equations, Stoch. Partial Differ. Equ. Anal. Comput. 11 (2023), no. 1, 211–268. MR 4563700, DOI 10.1007/s40072-021-00226-6
- Charles-Edouard Bréhier and Ludovic Goudenège, Analysis of some splitting schemes for the stochastic Allen-Cahn equation, Discrete Contin. Dyn. Syst. Ser. B 24 (2019), no. 8, 4169–4190. MR 3986273, DOI 10.3934/dcdsb.2019077
- Oleg Butkovsky, Konstantinos Dareiotis, and Máté Gerencsér, Optimal rate of convergence for approximations of SPDEs with non-regular drift, SIAM Journal on Numerical Analysis 61 (2023), no. 2, DOI 10.1137/21M1454213
- Giuseppe Da Prato and Arnaud Debussche, Strong solutions to the stochastic quantization equations, Ann. Probab. 31 (2003), no. 4, 1900–1916. MR 2016604, DOI 10.1214/aop/1068646370
- A. M. Davie and J. G. Gaines, Convergence of numerical schemes for the solution of parabolic stochastic partial differential equations, Math. Comp. 70 (2001), no. 233, 121–134. MR 1803132, DOI 10.1090/S0025-5718-00-01224-2
- William G. Faris and Giovanni Jona-Lasinio, Large fluctuations for a nonlinear heat equation with noise, J. Phys. A 15 (1982), no. 10, 3025–3055. MR 684578, DOI 10.1088/0305-4470/15/10/011
- Máté Gerencsér and István Gyöngy, Finite difference schemes for stochastic partial differential equations in Sobolev spaces, Appl. Math. Optim. 72 (2015), no. 1, 77–100. MR 3369398, DOI 10.1007/s00245-014-9272-2
- Massimiliano Gubinelli, Peter Imkeller, and Nicolas Perkowski, Paracontrolled distributions and singular PDEs, Forum Math. Pi 3 (2015), e6, 75. MR 3406823, DOI 10.1017/fmp.2015.2
- István Gyöngy, Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. II, Potential Anal. 11 (1999), no. 1, 1–37. MR 1699161, DOI 10.1023/A:1008699504438
- M. Hairer, A theory of regularity structures, Invent. Math. 198 (2014), no. 2, 269–504. MR 3274562, DOI 10.1007/s00222-014-0505-4
- M. Hairer, An introduction to stochastic PDEs (lecture notes), May 2023, https://www.hairer.org/notes/SPDEs_Course.pdf, Accessed: 23-05-22.
- M. Hairer and K. Matetski, Optimal rate of convergence for stochastic Burgers-type equations, Stoch. Partial Differ. Equ. Anal. Comput. 4 (2016), no. 2, 402–437. MR 3498987, DOI 10.1007/s40072-015-0067-5
- M. Hairer and K. Matetski, Discretisations of rough stochastic PDEs, Ann. Probab. 46 (2018), no. 3.
- Khoa Lê, A stochastic sewing lemma and applications, Electron. J. Probab. 25 (2020), Paper No. 38, 55. MR 4089788, DOI 10.1214/20-ejp442
- Zhihui Liu and Zhonghua Qiao, Strong approximation of monotone stochastic partial differential equations driven by white noise, IMA J. Numer. Anal. 40 (2020), no. 2, 1074–1093. MR 4092279, DOI 10.1093/imanum/dry088
- Ting Ma and Rong Chan Zhu, Convergence rate for Galerkin approximation of the stochastic Allen-Cahn equations on 2D torus, Acta Math. Sin. (Engl. Ser.) 37 (2021), no. 3, 471–490. MR 4229518, DOI 10.1007/s10114-020-9367-4
- Thomas Müller-Gronbach, Optimal pointwise approximation of SDEs based on Brownian motion at discrete points, Ann. Appl. Probab. 14 (2004), no. 4, 1605–1642. MR 2099646, DOI 10.1214/105051604000000954
- Xiaojie Wang, An efficient explicit full-discrete scheme for strong approximation of stochastic Allen-Cahn equation, Stochastic Process. Appl. 130 (2020), no. 10, 6271–6299. MR 4140034, DOI 10.1016/j.spa.2020.05.011
- Rongchan Zhu and Xiangchan Zhu, Lattice approximation to the dynamical $\Phi _3^4$ model, Ann. Probab. 46 (2018), no. 1, 397–455. MR 3758734, DOI 10.1214/17-AOP1188
- A. Zygmund, Trigonometric series: Vols. I, II, Cambridge University Press, London-New York, 1968. Second edition, reprinted with corrections and some additions. MR 236587
Bibliographic Information
- Máté Gerencsér
- Affiliation: TU Wien, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
- ORCID: 0000-0002-7276-7054
- Email: mate.gerencser@tuwien.ac.at
- Harprit Singh
- Affiliation: Imperial College London, Exhibition Rd, South Kensington, London SW7 2BX, UK
- ORCID: 0000-0002-9991-8393
- Email: h.singh19@imperial.ac.uk
- Received by editor(s): January 27, 2023
- Received by editor(s) in revised form: May 23, 2023
- Published electronically: December 12, 2023
- Additional Notes: The first author was funded by the Austrian Science Fund (FWF) Stand-Alone programme P 34992.
The second author was funded by the Imperial College London President’s PhD Scholarship. - © Copyright 2023 by the authors
- Journal: Trans. Amer. Math. Soc. 377 (2024), 1851-1881
- MSC (2020): Primary 54C40, 14E20; Secondary 46E25, 20C20
- DOI: https://doi.org/10.1090/tran/9029
- MathSciNet review: 4744743