Helly groups, coarsely Helly groups, and relative hyperbolicity
HTML articles powered by AMS MathViewer
- by Damian Osajda and Motiejus Valiunas;
- Trans. Amer. Math. Soc. 377 (2024), 1505-1542
- DOI: https://doi.org/10.1090/tran/8727
- Published electronically: January 18, 2024
- HTML | PDF | Request permission
Abstract:
A simplicial graph is said to be (coarsely) Helly if any collection of pairwise intersecting balls has non-empty (coarse) intersection. (Coarsely) Helly groups are groups acting geometrically on (coarsely) Helly graphs. Our main result is that finitely generated groups that are hyperbolic relative to (coarsely) Helly subgroups are themselves (coarsely) Helly. One important consequence is that various classical groups, including toral relatively hyperbolic groups, are equipped with a CAT(0)-like structure—they act geometrically on spaces with convex geodesic bicombing. As a means of proving the main theorems we establish a result of independent interest concerning relatively hyperbolic groups: a ‘relatively hyperbolic’ description of geodesics in a graph on which a relatively hyperbolic group acts geometrically. In the other direction, we show that for relatively hyperbolic (coarsely) Helly groups their parabolic subgroups are (coarsely) Helly as well. More generally, we show that ‘quasiconvex’ subgroups of (coarsely) Helly groups are themselves (coarsely) Helly.References
- Yago Antolín and Laura Ciobanu, Finite generating sets of relatively hyperbolic groups and applications to geodesic languages, Trans. Amer. Math. Soc. 368 (2016), no. 11, 7965–8010. MR 3546790, DOI 10.1090/tran/6701
- Goulnara N. Arzhantseva, Christopher H. Cashen, Dominik Gruber, and David Hume, Characterizations of Morse quasi-geodesics via superlinear divergence and sublinear contraction, Doc. Math. 22 (2017), 1193–1224. MR 3690269, DOI 10.4171/dm/592
- A. Bartels, Coarse flow spaces for relatively hyperbolic groups, Compos. Math. 153 (2017), no. 4, 745–779. MR 3631229, DOI 10.1112/S0010437X16008216
- Hans-Jürgen Bandelt and Victor Chepoi, Metric graph theory and geometry: a survey, Surveys on discrete and computational geometry, Contemp. Math., vol. 453, Amer. Math. Soc., Providence, RI, 2008, pp. 49–86. MR 2405677, DOI 10.1090/conm/453/08795
- Hans-Jürgen Bandelt and Henry Martyn Mulder, Pseudomodular graphs, Discrete Math. 62 (1986), no. 3, 245–260. MR 866940, DOI 10.1016/0012-365X(86)90212-8
- J. Chalopin, V. Chepoi, A. Genevois, H. Hirai, and D. Osajda, Helly groups, preprint, available at arXiv:2002.06895, 2020.
- M. Coornaert, T. Delzant, and A. Papadopoulos, Géométrie et théorie des groupes, Lecture Notes in Mathematics, vol. 1441, Springer-Verlag, Berlin, 1990 (French). Les groupes hyperboliques de Gromov. [Gromov hyperbolic groups]; With an English summary. MR 1075994, DOI 10.1007/BFb0084913
- François Dahmani and Daniel Groves, The isomorphism problem for toral relatively hyperbolic groups, Publ. Math. Inst. Hautes Études Sci. 107 (2008), 211–290. MR 2434694, DOI 10.1007/s10240-008-0014-3
- Dominic Descombes and Urs Lang, Flats in spaces with convex geodesic bicombings, Anal. Geom. Metr. Spaces 4 (2016), no. 1, 68–84. MR 3483604, DOI 10.1515/agms-2016-0003
- Cornelia Druţu and Mark Sapir, Tree-graded spaces and asymptotic cones of groups, Topology 44 (2005), no. 5, 959–1058. With an appendix by Denis Osin and Mark Sapir. MR 2153979, DOI 10.1016/j.top.2005.03.003
- Tomohiro Fukaya and Shin-ichi Oguni, The coarse Baum-Connes conjecture for relatively hyperbolic groups, J. Topol. Anal. 4 (2012), no. 1, 99–113. MR 2914875, DOI 10.1142/S1793525312500021
- Étienne Ghys and Pierre de la Harpe, Espaces métriques hyperboliques, Sur les groupes hyperboliques d’après Mikhael Gromov (Bern, 1988) Progr. Math., vol. 83, Birkhäuser Boston, Boston, MA, 1990, pp. 27–45 (French). MR 1086650, DOI 10.1007/978-1-4684-9167-8_{2}
- T. Haettel, N. Hoda, and H. Petyt, The coarse Helly property, hierarchical hyperbolicity, and semihyperbolicity, Geom. Topol. (2022), to appear.
- Jingyin Huang and Damian Osajda, Helly meets Garside and Artin, Invent. Math. 225 (2021), no. 2, 395–426. MR 4285138, DOI 10.1007/s00222-021-01030-8
- N. Hoda, Crystallographic Helly groups, preprint, available at arXiv:2010.07407, 2020.
- Urs Lang, Injective hulls of certain discrete metric spaces and groups, J. Topol. Anal. 5 (2013), no. 3, 297–331. MR 3096307, DOI 10.1142/S1793525313500118
- Denis V. Osin, Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems, Mem. Amer. Math. Soc. 179 (2006), no. 843, vi+100. MR 2182268, DOI 10.1090/memo/0843
- Denis V. Osin, Peripheral fillings of relatively hyperbolic groups, Invent. Math. 167 (2007), no. 2, 295–326. MR 2270456, DOI 10.1007/s00222-006-0012-3
- Donovan Yves Rebbechi, Algorithmic properties of relatively hyperbolic groups, ProQuest LLC, Ann Arbor, MI, 2001. Thesis (Ph.D.)–Rutgers The State University of New Jersey - Newark. MR 2701979
- Hung Cong Tran, On strongly quasiconvex subgroups, Geom. Topol. 23 (2019), no. 3, 1173–1235. MR 3956891, DOI 10.2140/gt.2019.23.1173
Bibliographic Information
- Damian Osajda
- Affiliation: Instytut Matematyczny, Uniwersytet Wrocławski, plac Grunwaldzki 2/4, 50-384 Wrocław, Poland; and Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-656 Warszawa, Poland
- MR Author ID: 813959
- ORCID: 0000-0002-5412-8443
- Email: dosaj@math.uni.wroc.pl
- Motiejus Valiunas
- Affiliation: Instytut Matematyczny, Uniwersytet Wrocławski, plac Grunwaldzki 2/4, 50-384 Wrocław, Poland
- MR Author ID: 1137749
- ORCID: 0000-0003-1519-6643
- Email: valiunas@math.uni.wroc.pl
- Received by editor(s): February 14, 2021
- Received by editor(s) in revised form: February 19, 2022
- Published electronically: January 18, 2024
- Additional Notes: The first author was partially supported by (Polish) Narodowe Centrum Nauki, UMO-2017/25/B/ST1/01335.
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 1505-1542
- MSC (2020): Primary 20F65, 20F67, 05E18
- DOI: https://doi.org/10.1090/tran/8727
- MathSciNet review: 4744735