$\mathrm {C}^*$-algebras associated to homeomorphisms twisted by vector bundles over finite dimensional spaces
HTML articles powered by AMS MathViewer
- by Maria Stella Adamo, Dawn E. Archey, Marzieh Forough, Magdalena C. Georgescu, Ja A. Jeong, Karen R. Strung and Maria Grazia Viola;
- Trans. Amer. Math. Soc. 377 (2024), 1597-1640
- DOI: https://doi.org/10.1090/tran/8900
- Published electronically: January 18, 2024
- HTML | PDF | Request permission
Abstract:
In this paper we study Cuntz–Pimsner algebras associated to 𝐶*-correspondences
over commutative $\mathrm {C}^*$-algebras from the point of view of the $\mathrm {C}^*$-algebra classification programme. We show that when the correspondence comes from an aperiodic homeomorphism of a finite dimensional infinite compact metric space $X$ twisted by a vector bundle, the resulting Cuntz–Pimsner algebras have finite nuclear dimension. When the homeomorphism is minimal, this entails classification of these $\mathrm {C}^*$-algebras by the Elliott invariant. This establishes a dichotomy: when the vector bundle has rank one, the Cuntz–Pimsner algebra has stable rank one. Otherwise, it is purely infinite.
For a Cuntz–Pimsner algebra of a minimal homeomorphism of an infinite compact metric space $X$ twisted by a line bundle over $X$, we introduce orbit-breaking subalgebras. With no assumptions on the dimension of $X$, we show that they are centrally large subalgebras and hence simple and stably finite. When the dimension of $X$ is finite, they are furthermore $\mathcal {Z}$-stable and hence classified by the Elliott invariant.
References
- Beatriz Abadie, Generalized fixed-point algebras of certain actions on crossed products, Pacific J. Math. 171 (1995), no. 1, 1–21. MR 1362977, DOI 10.2140/pjm.1995.171.1
- Beatriz Abadie, Søren Eilers, and Ruy Exel, Morita equivalence for crossed products by Hilbert $C^*$-bimodules, Trans. Amer. Math. Soc. 350 (1998), no. 8, 3043–3054. MR 1467459, DOI 10.1090/S0002-9947-98-02133-3
- Beatriz Abadie and Ruy Exel, Hilbert $C^*$-bimodules over commutative $C^*$-algebras and an isomorphism condition for quantum Heisenberg manifolds, Rev. Math. Phys. 9 (1997), no. 4, 411–423. MR 1456142, DOI 10.1142/S0129055X97000166
- Dawn Archey, Julian Buck, and N. Christopher Phillips, Centrally large subalgebras and tracial $\mathcal Z$ absorption, Int. Math. Res. Not. IMRN 6 (2018), 1857–1877. MR 3801476, DOI 10.1093/imrn/rnw292
- Dawn E. Archey and N. Christopher Phillips, Permanence of stable rank one for centrally large subalgebras and crossed products by minimal homeomorphisms, J. Operator Theory 83 (2020), no. 2, 353–389. MR 4078704, DOI 10.7900/jot
- Joan Bosa, Nathanial P. Brown, Yasuhiko Sato, Aaron Tikuisis, Stuart White, and Wilhelm Winter, Covering dimension of $\rm C^*$-algebras and 2-coloured classification, Mem. Amer. Math. Soc. 257 (2019), no. 1233, vii+97. MR 3908669, DOI 10.1090/memo/1233
- Lawrence G. Brown, Philip Green, and Marc A. Rieffel, Stable isomorphism and strong Morita equivalence of $C^*$-algebras, Pacific J. Math. 71 (1977), no. 2, 349–363. MR 463928, DOI 10.2140/pjm.1977.71.349
- Lawrence G. Brown, James A. Mingo, and Nien-Tsu Shen, Quasi-multipliers and embeddings of Hilbert $C^\ast$-bimodules, Canad. J. Math. 46 (1994), no. 6, 1150–1174. MR 1304338, DOI 10.4153/CJM-1994-065-5
- Nathanial P. Brown and Narutaka Ozawa, $C^*$-algebras and finite-dimensional approximations, Graduate Studies in Mathematics, vol. 88, American Mathematical Society, Providence, RI, 2008. MR 2391387, DOI 10.1090/gsm/088
- Nathanial P. Brown, Aaron Tikuisis, and Aleksey M. Zelenberg, Rokhlin dimension for $C^\ast$-correspondences, Houston J. Math. 44 (2018), no. 2, 613–643. MR 3845113
- Jorge Castillejos, Samuel Evington, Aaron Tikuisis, Stuart White, and Wilhelm Winter, Nuclear dimension of simple $\rm C^*$-algebras, Invent. Math. 224 (2021), no. 1, 245–290. MR 4228503, DOI 10.1007/s00222-020-01013-1
- Kenneth R. Davidson, $C^*$-algebras by example, Fields Institute Monographs, vol. 6, American Mathematical Society, Providence, RI, 1996. MR 1402012, DOI 10.1090/fim/006
- Robin J. Deeley, Ian F. Putnam, and Karen R. Strung, Classifiable $\mathrm {C}^*$-algebras from minimal $\mathbb {Z}$-actions and their orbit-breaking subalgebras, Math. Ann., To appear, Preprint, arXiv:2012.10947 [math.OA].
- Robin J. Deeley, Ian F. Putnam, and Karen R. Strung, Minimal homeomorphisms and topological $K$-theory, Groups Geom. Dyn., To appear, Preprint, arXiv:2012.10950 [math.DS].
- Robin J. Deeley, Ian F. Putnam, and Karen R. Strung, Constructing minimal homeomorphisms on point-like spaces and a dynamical presentation of the Jiang-Su algebra, J. Reine Angew. Math. 742 (2018), 241–261. MR 3849627, DOI 10.1515/crelle-2015-0091
- N. M. dos Santos and R. Urzúa-Luz, Minimal homeomorphisms on low-dimensional tori, Ergodic Theory Dynam. Systems 29 (2009), no. 5, 1515–1528. MR 2545015, DOI 10.1017/S0143385708000813
- George A. Elliott, On the classification of inductive limits of sequences of semisimple finite-dimensional algebras, J. Algebra 38 (1976), no. 1, 29–44. MR 397420, DOI 10.1016/0021-8693(76)90242-8
- George A. Elliott, Guihua Gong, Huaxin Lin, and Zhuang Niu, On the classification of simple amenable 𝐶*-algebras with finite decomposition rank II, Preprint, arXiv:1507.03437v2 [math.OA], 2015.
- George A. Elliott and Zhuang Niu, The C$^*$-algebra of a minimal homeomorphism of zero mean dimension, Duke Math. J. 166 (2017), no. 18, 3569–3594. MR 3732883, DOI 10.1215/00127094-2017-0033
- Benson Farb and Dan Margalit, A primer on mapping class groups, Princeton Mathematical Series, vol. 49, Princeton University Press, Princeton, NJ, 2012. MR 2850125
- Marzieh Forough, Ja A. Jeong, and Karen R. Strung, Crossed products associated to homeomorphisms of mean dimension zero twisted by line bundles, In preparation.
- Marzieh Forough and Karen R. Strung, Cartan preserving isomorphisms between crossed products by Hilbert $C(X)$-bimodules, In preparation.
- Michael Frank and David R. Larson, Frames in Hilbert $C^\ast$-modules and $C^\ast$-algebras, J. Operator Theory 48 (2002), no. 2, 273–314. MR 1938798
- Thierry Giordano, David Kerr, N. Christopher Phillips, and Andrew Toms, Crossed products of $C^*$-algebras, topological dynamics, and classification, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser/Springer, Cham, 2018. Lecture notes based on the course held at the Centre de Recerca Matemàtica (CRM) Barcelona, June 14–23, 2011; Edited by Francesc Perera. MR 3837150, DOI 10.1007/978-3-319-70869-0
- Thierry Giordano, Ian F. Putnam, and Christian F. Skau, Topological orbit equivalence and $C^*$-crossed products, J. Reine Angew. Math. 469 (1995), 51–111. MR 1363826
- Guihua Gong, Huaxin Lin, and Zhuang Niu, A classification of finite simple amenable $\mathcal Z$-stable $\textrm {C}^\ast$-algebras, II: $\textrm {C}^\ast$-algebras with rational generalized tracial rank one, C. R. Math. Acad. Sci. Soc. R. Can. 42 (2020), no. 4, 451–539 (English, with English and French summaries). MR 4215380
- Guihua Gong, Huaxin Lin, and Zhuang Niu, A classification of finite simple amenable $\mathcal Z$-stable $C^\ast$-algebras, I: $C^\ast$-algebras with generalized tracial rank one, C. R. Math. Acad. Sci. Soc. R. Can. 42 (2020), no. 3, 63–450 (English, with English and French summaries). MR 4215379
- Ilan Hirshberg, Wilhelm Winter, and Joachim Zacharias, Rokhlin dimension and $C^*$-dynamics, Comm. Math. Phys. 335 (2015), no. 2, 637–670. MR 3316642, DOI 10.1007/s00220-014-2264-x
- Dale Husemoller, Fibre bundles, 3rd ed., Graduate Texts in Mathematics, vol. 20, Springer-Verlag, New York, 1994. MR 1249482, DOI 10.1007/978-1-4757-2261-1
- Xinhui Jiang and Hongbing Su, On a simple unital projectionless $C^*$-algebra, Amer. J. Math. 121 (1999), no. 2, 359–413. MR 1680321, DOI 10.1353/ajm.1999.0012
- Takeshi Katsura, A construction of $C^*$-algebras from $C^*$-correspondences, Advances in quantum dynamics (South Hadley, MA, 2002) Contemp. Math., vol. 335, Amer. Math. Soc., Providence, RI, 2003, pp. 173–182. MR 2029622, DOI 10.1090/conm/335/06007
- Takeshi Katsura, On $C^*$-algebras associated with $C^*$-correspondences, J. Funct. Anal. 217 (2004), no. 2, 366–401. MR 2102572, DOI 10.1016/j.jfa.2004.03.010
- Eberhard Kirchberg and Mikael Rørdam, Non-simple purely infinite $C^\ast$-algebras, Amer. J. Math. 122 (2000), no. 3, 637–666. MR 1759891, DOI 10.1353/ajm.2000.0021
- Eberhard Kirchberg and Wilhelm Winter, Covering dimension and quasidiagonality, Internat. J. Math. 15 (2004), no. 1, 63–85. MR 2039212, DOI 10.1142/S0129167X04002119
- Akitaka Kishimoto, The Rohlin property for automorphisms of UHF algebras, J. Reine Angew. Math. 465 (1995), 183–196. MR 1344136, DOI 10.1515/crll.1995.465.183
- E. C. Lance, Hilbert $C^*$-modules, London Mathematical Society Lecture Note Series, vol. 210, Cambridge University Press, Cambridge, 1995. A toolkit for operator algebraists. MR 1325694, DOI 10.1017/CBO9780511526206
- Xin Li, Every classifiable simple $\rm C^*$-algebra has a Cartan subalgebra, Invent. Math. 219 (2020), no. 2, 653–699. MR 4054809, DOI 10.1007/s00222-019-00914-0
- Huaxin Lin and N. Christopher Phillips, Crossed products by minimal homeomorphisms, J. Reine Angew. Math. 641 (2010), 95–122. MR 2643926, DOI 10.1515/CRELLE.2010.029
- Qing Lin, Analytic structure of the transformation group $\mathrm {C}^*$-algebra associated with minimal dynamical systems, Preprint.
- A. S. Miščenko, Banach algebras, pseudodifferential operators and their applications to $K$-theory, Uspekhi Mat. Nauk 34 (1979), no. 6(210), 67–79 (Russian). MR 562820
- N. Christopher Phillips, Large subalgebras, Preprint, arXiv:1408.5546v1 [math.OA], 2014.
- Michael V. Pimsner, A class of $C^*$-algebras generalizing both Cuntz-Krieger algebras and crossed products by $\textbf {Z}$, Free probability theory (Waterloo, ON, 1995) Fields Inst. Commun., vol. 12, Amer. Math. Soc., Providence, RI, 1997, pp. 189–212. MR 1426840
- Ian F. Putnam, The $C^*$-algebras associated with minimal homeomorphisms of the Cantor set, Pacific J. Math. 136 (1989), no. 2, 329–353. MR 978619, DOI 10.2140/pjm.1989.136.329
- Ian F. Putnam, On the $K$-theory of $C^*$-algebras of principal groupoids, Rocky Mountain J. Math. 28 (1998), no. 4, 1483–1518. MR 1681679, DOI 10.1216/rmjm/1181071727
- Iain Raeburn and Dana P. Williams, Morita equivalence and continuous-trace $C^*$-algebras, Mathematical Surveys and Monographs, vol. 60, American Mathematical Society, Providence, RI, 1998. MR 1634408, DOI 10.1090/surv/060
- Marc A. Rieffel, Deformation quantization of Heisenberg manifolds, Comm. Math. Phys. 122 (1989), no. 4, 531–562. MR 1002830, DOI 10.1007/BF01256492
- Mikael Rørdam, A simple $C^*$-algebra with a finite and an infinite projection, Acta Math. 191 (2003), no. 1, 109–142. MR 2020420, DOI 10.1007/BF02392697
- Mikael Rørdam, On the structure of simple $C^*$-algebras tensored with a UHF-algebra. II, J. Funct. Anal. 107 (1992), no. 2, 255–269. MR 1172023, DOI 10.1016/0022-1236(92)90106-S
- Mikael Rørdam, The stable and the real rank of $\scr Z$-absorbing $C^*$-algebras, Internat. J. Math. 15 (2004), no. 10, 1065–1084. MR 2106263, DOI 10.1142/S0129167X04002661
- Jürgen Schweizer, Dilations of $C^*$-correspondences and the simplicity of Cuntz-Pimsner algebras, J. Funct. Anal. 180 (2001), no. 2, 404–425. MR 1814994, DOI 10.1006/jfan.2000.3703
- Karen R. Strung, $\textrm {C}^*$-algebras of minimal dynamical systems of the product of a Cantor set and an odd dimensional sphere, J. Funct. Anal. 268 (2015), no. 3, 671–689. MR 3292350, DOI 10.1016/j.jfa.2014.10.014
- Karen R. Strung, An introduction to $\textrm {C}^*$-algebras and the classification program, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser/Springer, Cham, [2021] ©2021. Edited and with a foreword by Francesc Perera. MR 4225279, DOI 10.1007/978-3-030-47465-2
- Karen R. Strung and Wilhelm Winter, Minimal dynamics and $\scr Z$-stable classification, Internat. J. Math. 22 (2011), no. 1, 1–23. MR 2765440, DOI 10.1142/S0129167X10006665
- Richard G. Swan, Vector bundles and projective modules, Trans. Amer. Math. Soc. 105 (1962), 264–277. MR 143225, DOI 10.1090/S0002-9947-1962-0143225-6
- Gábor Szabó, The Rokhlin dimension of topological $\Bbb {Z}^m$-actions, Proc. Lond. Math. Soc. (3) 110 (2015), no. 3, 673–694. MR 3342101, DOI 10.1112/plms/pdu065
- Aaron Tikuisis, Stuart White, and Wilhelm Winter, Quasidiagonality of nuclear $C^\ast$-algebras, Ann. of Math. (2) 185 (2017), no. 1, 229–284. MR 3583354, DOI 10.4007/annals.2017.185.1.4
- Andrew Toms, On the independence of $K$-theory and stable rank for simple $C^*$-algebras, J. Reine Angew. Math. 578 (2005), 185–199. MR 2113894, DOI 10.1515/crll.2005.2005.578.185
- Andrew S. Toms and Wilhelm Winter, Minimal dynamics and K-theoretic rigidity: Elliott’s conjecture, Geom. Funct. Anal. 23 (2013), no. 1, 467–481. MR 3037905, DOI 10.1007/s00039-012-0208-1
- Ezio Vasselli, Continuous fields of $C^*$-algebras arising from extensions of tensor $C^*$-categories, J. Funct. Anal. 199 (2003), no. 1, 122–152. MR 1966825, DOI 10.1016/S0022-1236(02)00093-9
- Jesper Villadsen, Simple $C^*$-algebras with perforation, J. Funct. Anal. 154 (1998), no. 1, 110–116. MR 1616504, DOI 10.1006/jfan.1997.3168
- Jesper Villadsen, On the stable rank of simple $C^\ast$-algebras, J. Amer. Math. Soc. 12 (1999), no. 4, 1091–1102. MR 1691013, DOI 10.1090/S0894-0347-99-00314-8
- N. E. Wegge-Olsen, $K$-theory and $C^*$-algebras, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1993. A friendly approach. MR 1222415
- Wilhelm Winter, Covering dimension for nuclear $C^*$-algebras, J. Funct. Anal. 199 (2003), no. 2, 535–556. MR 1971906, DOI 10.1016/S0022-1236(02)00109-X
- Wilhelm Winter, Covering dimension for nuclear $C^*$-algebras. II, Trans. Amer. Math. Soc. 361 (2009), no. 8, 4143–4167. MR 2500882, DOI 10.1090/S0002-9947-09-04602-9
- Wilhelm Winter, Nuclear dimension and $\scr {Z}$-stability of pure $\rm C^*$-algebras, Invent. Math. 187 (2012), no. 2, 259–342. MR 2885621, DOI 10.1007/s00222-011-0334-7
- Wilhelm Winter, Structure of nuclear $\rm C^*$-algebras: from quasidiagonality to classification and back again, Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. III. Invited lectures, World Sci. Publ., Hackensack, NJ, 2018, pp. 1801–1823. MR 3966830
- Wilhelm Winter and Joachim Zacharias, The nuclear dimension of $C^\ast$-algebras, Adv. Math. 224 (2010), no. 2, 461–498. MR 2609012, DOI 10.1016/j.aim.2009.12.005
Bibliographic Information
- Maria Stella Adamo
- Affiliation: Department of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Tokyo 153-8914, Japan
- MR Author ID: 1093648
- ORCID: 0000-0002-9781-016X
- Email: adamoms@ms.u-tokyo.ac.jp
- Dawn E. Archey
- Affiliation: Department of Mathematics, University of Detroit Mercy, 4001 W. McNichols Road, Detroit, Michigan 48221-3038
- MR Author ID: 959123
- ORCID: 0000-0003-4663-4159
- Email: archeyde@udmercy.edu
- Marzieh Forough
- Affiliation: Department of Abstract Analysis, Institute of Mathematics, Czech Academy of Sciences, Žitná 25, 115 67 Prague 1, Czech Republic
- Address at time of publication: Department of Applied Mathematics, Faculty of Information Technology, Czech Technical University in Prague, Thákurova 9, 160 00 Prague 6, Czech Republic
- MR Author ID: 993807
- Email: foroumar@fit.cvut.cz
- Magdalena C. Georgescu
- Affiliation: Toronto, Ontario, Canada
- MR Author ID: 1203267
- Email: mcgeorgescu@gmail.com
- Ja A. Jeong
- Affiliation: Department of Mathematical Sciences and Research Institute of Mathematics, Seoul National University, Seoul 08826, South Korea
- Email: jajeong@snu.ac.kr
- Karen R. Strung
- Affiliation: Department of Abstract Analysis, Institute of Mathematics, Czech Academy of Sciences, Žitná 25, 115 67 Prague 1, Czech Republic
- MR Author ID: 924942
- ORCID: 0000-0002-8445-4637
- Email: strung@math.cas.cz
- Maria Grazia Viola
- Affiliation: Lakehead University, Orillia, Ontario L3V 0B9, Canada, and Fields Institute, 222 College Street, Toronto, Ontario M5T 3J1, Canada
- MR Author ID: 746195
- Email: mviola@lakeheadu.ca
- Received by editor(s): May 17, 2022
- Received by editor(s) in revised form: December 30, 2022
- Published electronically: January 18, 2024
- Additional Notes: Karen R. Strung is corresponding author
The first author was supported by ERC Advanced Grant no. 669240 QUEST “Quantum Algebraic Structures and Models”. The first author acknowledges the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro applicationi (GNAMPA) of INdAM. Part of this work was carried out while the first author was funded by an Oberwolfach Leibniz Fellowship in 2020 and in 2021, and supported by the University of Rome “Tor Vergata” funding scheme “Beyond Borders” CUP E84I19002200005. The first author is currently a JSPS International Research Fellow supported by the Grant-in-Aid Kakenhi n. 22F21312.
The third author was supported by GAČR project 19-05271Y, RVO:67985840.
The fifth author was partially supported by NRF 2018R1D1A1B07041172.
The sixth author was funded by GAČR project 20-17488Y and RVO: 67985840
and part of this work was carried out while funded by a Radboud Excellence Initiative Postdoctoral Fellowship.
The seventh author was supported by an NSERC Discovery Grant. - © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 1597-1640
- MSC (2020): Primary 46L35; Secondary 37B05, 46L85, 46H25
- DOI: https://doi.org/10.1090/tran/8900
- MathSciNet review: 4744737