Cohomology of the Morava stabilizer group through the duality resolution at $n=p=2$
HTML articles powered by AMS MathViewer
- by Agnès Beaudry, Irina Bobkova, Paul G. Goerss, Hans-Werner Henn, Viet-Cuong Pham and Vesna Stojanoska;
- Trans. Amer. Math. Soc. 377 (2024), 1761-1805
- DOI: https://doi.org/10.1090/tran/8981
- Published electronically: January 16, 2024
- HTML | PDF
Abstract:
We compute the continuous cohomology of the Morava stabilizer group with coefficients in Morava $E$-theory, $H^*(\mathbb {G}_2, \mathbf {E}_t)$, at $p=2$, for $0\leq t < 12$, using the Algebraic Duality Spectral Sequence. Furthermore, in that same range, we compute the $d_3$-differentials in the homotopy fixed point spectral sequence for the $K(2)$-local sphere spectrum. These cohomology groups and differentials play a central role in $K(2)$-local stable homotopy theory.References
- Tilman Bauer, Computation of the homotopy of the spectrum tmf, Groups, homotopy and configuration spaces, Geom. Topol. Monogr., vol. 13, Geom. Topol. Publ., Coventry, 2008, pp. 11–40. MR 2508200, DOI 10.2140/gtm.2008.13.11
- Agnes Beaudry, Irina Bobkova, Paul G. Goerss, Hans-Werner Henn, Viet-Cuong Pham, and Vesna Stojanoska. The Exotic $K(2)$-Local Picard Group at the Prime $2$. arXiv e-prints, page arXiv:2212.07858, December 2022. arXiv:2212.07858.
- Agnes Beaudry, Irina Bobkova, Paul G. Goerss, Hans-Werner Henn, Viet-Cuong Pham, and Vesna Stojanoska, Cohomology of the Morava stabilizer group through the duality resolution at $n = p = 2$, arXiv:2210.15994v2 (2023)
- Agnès Beaudry, The algebraic duality resolution at $p=2$, Algebr. Geom. Topol. 15 (2015), no. 6, 3653–3705. MR 3450774, DOI 10.2140/agt.2015.15.3653
- Agnès Beaudry, Towards the homotopy of the $K(2)$-local Moore spectrum at $p=2$, Adv. Math. 306 (2017), 722–788. MR 3581316, DOI 10.1016/j.aim.2016.10.020
- Agnès Beaudry, The $\alpha$-family in the $K(2)$-local sphere at the prime 2, Homotopy theory: tools and applications, Contemp. Math., vol. 729, Amer. Math. Soc., [Providence], RI, [2019] ©2019, pp. 1–19. MR 3959594, DOI 10.1090/conm/729/14689
- Irina Bobkova and Paul G. Goerss, Topological resolutions in $K(2)$-local homotopy theory at the prime 2, J. Topol. 11 (2018), no. 4, 918–957. MR 3989433, DOI 10.1112/topo.12076
- Agnès Beaudry, Paul G. Goerss, and Hans-Werner Henn, Chromatic splitting for the $K(2)$-local sphere at $p = 2$, Geom. Topol. 26 (2022), no. 1, 377–476. MR 4404881, DOI 10.2140/gt.2022.26.377
- Mark Behrens, Mark Mahowald, and J. D. Quigley. The 2-primary Hurewicz image of tmf. arXiv e-prints, page arXiv:2011.08956, November 2020. arXiv:2011.08956.
- Christopher L. Douglas, John Francis, André G. Henriques, and Michael A. Hill (eds.), Topological modular forms, Mathematical Surveys and Monographs, vol. 201, American Mathematical Society, Providence, RI, 2014. MR 3223024, DOI 10.1090/surv/201
- Ethan S. Devinatz and Michael J. Hopkins, Homotopy fixed point spectra for closed subgroups of the Morava stabilizer groups, Topology 43 (2004), no. 1, 1–47. MR 2030586, DOI 10.1016/S0040-9383(03)00029-6
- Paul G. Goerss, Hans-Werner Henn, and Mark Mahowald, The rational homotopy of the $K(2)$-local sphere and the chromatic splitting conjecture for the prime 3 and level 2, Doc. Math. 19 (2014), 1271–1290. MR 3312144, DOI 10.4171/dm/480
- P. Goerss, H.-W. Henn, M. Mahowald, and C. Rezk, A resolution of the $K(2)$-local sphere at the prime 3, Ann. of Math. (2) 162 (2005), no. 2, 777–822. MR 2183282, DOI 10.4007/annals.2005.162.777
- Paul Goerss, Hans-Werner Henn, Mark Mahowald, and Charles Rezk, On Hopkins’ Picard groups for the prime 3 and chromatic level 2, J. Topol. 8 (2015), no. 1, 267–294. MR 3335255, DOI 10.1112/jtopol/jtu024
- Daniel C. Isaksen. Classical and motivic Adams-Novikov charts. arXiv e-prints, page arXiv:1408.0248, August 2014. arXiv:1408.0248.
- Douglas C. Ravenel, The cohomology of the Morava stabilizer algebras, Math. Z. 152 (1977), no. 3, 287–297. MR 431168, DOI 10.1007/BF01488970
- Douglas C. Ravenel, A novice’s guide to the Adams-Novikov spectral sequence, Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977) Lecture Notes in Math., vol. 658, Springer, Berlin-New York, 1978, pp. 404–475. MR 513586
- Douglas C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Pure and Applied Mathematics, vol. 121, Academic Press, Inc., Orlando, FL, 1986. MR 860042
- Charles Rezk. Supplementary Notes for Math 512. Available from http://www.math.uiuc.edu/~rezk/512-spr2001-notes.pdf.
- Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986. MR 817210, DOI 10.1007/978-1-4757-1920-8
- Neil Strickland. Level three structures. arXiv e-prints, page arXiv:1803.09962, March 2018. arXiv:1803.09962.
- Katsumi Shimomura and Xiangjun Wang. The Adams-Novikov $E_2$-term for $\pi _*(L_2S^0)$ at the prime 2. Math. Z., 241(2):271–311, 2002. URL: https://doi.org/10.1007/s002090200415.
Bibliographic Information
- Agnès Beaudry
- Affiliation: Department of Mathematics, University of Colorado Boulder, Campus Box 395, Boulder, Colorado, 80309
- MR Author ID: 1124375
- ORCID: 0000-0003-0715-3109
- Email: agnes.beaudry@colorado.edu
- Irina Bobkova
- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas, 77843
- MR Author ID: 1124377
- Email: ibobkova@tamu.edu
- Paul G. Goerss
- Affiliation: Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, Illinois, 60208
- MR Author ID: 74500
- ORCID: 0009-0000-2864-4885
- Email: pgoerss@math.northwestern.edu
- Hans-Werner Henn
- Affiliation: Institut de Recherche Mathématique Avancée, C.N.R.S. et Université de Strasbourg, rue René Descartes, 67084 Strasbourg Cedex, France
- MR Author ID: 189973
- ORCID: 0000-0003-1405-7406
- Email: henn@math.unistra.fr
- Viet-Cuong Pham
- Affiliation: Lycée Georges de la Tour, Place Maud’huy, 57000 Metz, France
- MR Author ID: 1554204
- Email: phamvietcuonga2@gmail.com
- Vesna Stojanoska
- Affiliation: Department of Mathematics, University of Illinois, Urbana-Champaign, 273 Altgeld Hall 1409 W. Green Street, Urbana, Illinois 61801
- MR Author ID: 857759
- ORCID: 0000-0001-8395-9302
- Email: vesna@illinois.edu
- Received by editor(s): February 22, 2023
- Received by editor(s) in revised form: April 30, 2023
- Published electronically: January 16, 2024
- Additional Notes: This material is based upon work supported by the National Science Foundation under grants No. DMS-2005627, DMS-1906227 and DMS-1812122
- © Copyright 2024 by the authors
- Journal: Trans. Amer. Math. Soc. 377 (2024), 1761-1805
- MSC (2020): Primary 55P42
- DOI: https://doi.org/10.1090/tran/8981
- MathSciNet review: 4744734