Aron–Berner–type extension in complex Banach manifolds
HTML articles powered by AMS MathViewer
- by László Lempert;
- Trans. Amer. Math. Soc. 377 (2024), 2169-2203
- DOI: https://doi.org/10.1090/tran/9092
- Published electronically: January 18, 2024
- HTML | PDF | Request permission
Abstract:
Let $S$ be a compact Hausdorff space and $X$ a complex manifold. We consider the space $C(S,X)$ of continuous maps $S\to X$, and prove that any bounded holomorphic function on this space can be continued to a holomorphic function, possibly multivalued, on a larger space $B(S,X)$ of Borel maps. As an application we prove two theorems about bounded holomorphic functions on $C(S,X)$, one reminiscent of the Monodromy Theorem, the other of Liouville’s Theorem.References
- Richard M. Aron and Paul D. Berner, A Hahn-Banach extension theorem for analytic mappings, Bull. Soc. Math. France 106 (1978), no. 1, 3–24 (English, with French summary). MR 508947, DOI 10.24033/bsmf.1862
- Richard Aron, Pablo Galindo, Damián Pinasco, and Ignacio Zalduendo, Group-symmetric holomorphic functions on a Banach space, Bull. Lond. Math. Soc. 48 (2016), no. 5, 779–796. MR 3556361, DOI 10.1112/blms/bdw043
- Daniel Carando, Extendible polynomials on Banach spaces, J. Math. Anal. Appl. 233 (1999), no. 1, 359–372. MR 1684392, DOI 10.1006/jmaa.1999.6319
- Yun Sung Choi, Domingo García, Sung Guen Kim, and Manuel Maestre, Composition, numerical range and Aron-Berner extension, Math. Scand. 103 (2008), no. 1, 97–110. MR 2464703, DOI 10.7146/math.scand.a-15071
- H. G. Dales, F. K. Dashiell Jr., A. T.-M. Lau, and D. Strauss, Banach spaces of continuous functions as dual spaces, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Springer, Cham, 2016. MR 3588279, DOI 10.1007/978-3-319-32349-7
- A. M. Davie and T. W. Gamelin, A theorem on polynomial-star approximation, Proc. Amer. Math. Soc. 106 (1989), no. 2, 351–356. MR 947313, DOI 10.1090/S0002-9939-1989-0947313-8
- Seán Dineen, Bounding subsets of a Banach space, Math. Ann. 192 (1971), 61–70. MR 303290, DOI 10.1007/BF02052733
- Seán Dineen, Complex analysis on infinite-dimensional spaces, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 1999. MR 1705327, DOI 10.1007/978-1-4471-0869-6
- Seán Dineen and Pauline Mellon, Holomorphic functions on symmetric Banach manifolds of compact type are constant, Math. Z. 229 (1998), no. 4, 753–765. MR 1664787, DOI 10.1007/PL00004681
- Seán Dineen and Milena Venkova, Extending bounded type holomorphic mappings on a Banach space, J. Math. Anal. Appl. 297 (2004), no. 2, 645–658. Special issue dedicated to John Horváth. MR 2088686, DOI 10.1016/j.jmaa.2004.04.011
- Nelson Dunford and Jacob T. Schwartz, Linear operators. Part I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. General theory; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1958 original; A Wiley-Interscience Publication. MR 1009162
- Hugh Gordon, The maximal ideal space of a ring of measurable functions, Amer. J. Math. 88 (1966), 827–843. MR 201961, DOI 10.2307/2373081
- Hans Grauert, On Levi’s problem and the imbedding of real-analytic manifolds, Ann. of Math. (2) 68 (1958), 460–472. MR 98847, DOI 10.2307/1970257
- Bengt Josefson, Bounding subsets of $l^{\infty }(A)$, J. Math. Pures Appl. (9) 57 (1978), no. 4, 397–421. MR 524627
- Shizuo Kakutani, Concrete representation of abstract $(M)$-spaces. (A characterization of the space of continuous functions.), Ann. of Math. (2) 42 (1941), 994–1024. MR 5778, DOI 10.2307/1968778
- Norihito Koiso, On the complex structure of a manifold of sections, Osaka J. Math. 27 (1990), no. 1, 175–183. MR 1049830
- László Lempert, The Dolbeault complex in infinite dimensions. I, J. Amer. Math. Soc. 11 (1998), no. 3, 485–520. MR 1603858, DOI 10.1090/S0894-0347-98-00266-5
- László Lempert, Holomorphic functions on (generalized) loop spaces, Math. Proc. R. Ir. Acad. 104A (2004), no. 1, 35–46. MR 2139508, DOI 10.3318/PRIA.2004.104.1.35
- László Lempert, Analytic continuation in mapping spaces, Pure Appl. Math. Q. 6 (2010), no. 4, Special Issue: In honor of Joseph J. Kohn., 1051–1080. MR 2742039, DOI 10.4310/PAMQ.2010.v6.n4.a6
- László Lempert and Imre Patyi, Analytic sheaves in Banach spaces, Ann. Sci. École Norm. Sup. (4) 40 (2007), no. 3, 453–486 (English, with English and French summaries). MR 2493388, DOI 10.1016/j.ansens.2006.12.006
- László Lempert and Endre Szabó, Rationally connected varieties and loop spaces, Asian J. Math. 11 (2007), no. 3, 485–496. MR 2372727, DOI 10.4310/AJM.2007.v11.n3.a6
- A. A. Miljutin, Isomorphism of the spaces of continuous functions over compact sets of the cardinality of the continuum, Teor. Funkciĭ Funkcional. Anal. i Priložen. 2 (1966), 150–156. (1 foldout) (Russian). MR 206695
- Jorge Mujica, Complex analysis in Banach spaces, North-Holland Mathematics Studies, vol. 120, North-Holland Publishing Co., Amsterdam, 1986. Holomorphic functions and domains of holomorphy in finite and infinite dimensions; Notas de Matemática [Mathematical Notes], 107. MR 842435
- Imre Patyi, Plurisubharmonic domination in Banach spaces, Adv. Math. 227 (2011), no. 1, 245–252. MR 2782193, DOI 10.1016/j.aim.2011.01.025
- Imre Patyi, On holomorphic domination, II, C. R. Math. Acad. Sci. Paris 353 (2015), no. 6, 501–503 (English, with English and French summaries). MR 3348982, DOI 10.1016/j.crma.2015.04.001
- L. S. Pontryagin, Topological groups, Gordon and Breach Science Publishers, Inc., New York-London-Paris, 1966. Translated from the second Russian edition by Arlen Brown. MR 201557
- Walter Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR 924157
- Julius Schauder, Zur Theorie stetiger Abbildungen in Funktionalräumen, Math. Z. 26 (1927), no. 1, 47–65 (German). MR 1544841, DOI 10.1007/BF01475440
- A. Ülger, Weakly compact bilinear forms and Arens regularity, Proc. Amer. Math. Soc. 101 (1987), no. 4, 697–704. MR 911036, DOI 10.1090/S0002-9939-1987-0911036-X
- J. H. C. Whitehead, Combinatorial homotopy. I, Bull. Amer. Math. Soc. 55 (1949), 213–245. MR 30759, DOI 10.1090/S0002-9904-1949-09175-9
- Ignacio Zalduendo, A canonical extension for analytic functions on Banach spaces, Trans. Amer. Math. Soc. 320 (1990), no. 2, 747–763. MR 1001952, DOI 10.1090/S0002-9947-1990-1001952-X
Bibliographic Information
- László Lempert
- Affiliation: Department of Mathematics, Purdue University, 150N University Street, West Lafayette, Indiana 47907-2067
- MR Author ID: 112435
- Email: lempert@purdue.edu
- Received by editor(s): June 21, 2023
- Received by editor(s) in revised form: October 19, 2023
- Published electronically: January 18, 2024
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 2169-2203
- MSC (2020): Primary 32K05, 46G20, 58D10
- DOI: https://doi.org/10.1090/tran/9092
- MathSciNet review: 4744754