Galois groups of random additive polynomials
HTML articles powered by AMS MathViewer
- by Lior Bary-Soroker, Alexei Entin and Eilidh McKemmie;
- Trans. Amer. Math. Soc. 377 (2024), 2231-2259
- DOI: https://doi.org/10.1090/tran/9098
- Published electronically: January 9, 2024
- HTML | PDF | Request permission
Abstract:
We study the distribution of the Galois group of a random $q$-additive polynomial over a rational function field: For $q$ a power of a prime $p$, let $f=X^{q^n}+a_{n-1}X^{q^{n-1}}+\ldots +a_1X^q+a_0X$ be a random polynomial chosen uniformly from the set of $q$-additive polynomials of degree $n$ and height $d$, that is, the coefficients are independent uniform polynomials of degree $\deg a_i\leq d$. The Galois group $G_f$ is a random subgroup of $\operatorname {GL}_n(q)$. Our main result shows that $G_f$ is almost surely large as $d,q$ are fixed and $n\to \infty$. For example, we give necessary and sufficient conditions so that $\operatorname {SL}_n(q)\leq G_f$ asymptotically almost surely. Our proof uses the classification of maximal subgroups of $\operatorname {GL}_n(q)$. We also consider the limits: $q,n$ fixed, $d\to \infty$ and $d,n$ fixed, $q\to \infty$, which are more elementary.References
- Theresa C. Anderson, Ayla Gafni, Robert J. Lemke Oliver, David Lowry-Duda, George Shakan, and Ruixiang Zhang, Quantitative Hilbert irreducibility and almost prime values of polynomial discriminants, Int. Math. Res. Not. IMRN 3 (2023), 2188–2214. MR 4565610, DOI 10.1093/imrn/rnab296
- M. Aschbacher, On the maximal subgroups of the finite classical groups, Invent. Math. 76 (1984), no. 3, 469–514. MR 746539, DOI 10.1007/BF01388470
- M. Bhargava, Galois groups of random integer polynomials and van der Waerden’s conjecture, Preprint, arXiv:2111.06507, 2021.
- B. J. Birch and H. P. F. Swinnerton-Dyer, Note on a problem of Chowla, Acta Arith. 5 (1959), 417–423 (1959). MR 113844, DOI 10.4064/aa-5-4-417-423
- Lior Bary-Soroker and Alexei Entin, Explicit Hilbert’s irreducibility theorem in function fields, Abelian varieties and number theory, Contemp. Math., vol. 767, Amer. Math. Soc., [Providence], RI, [2021] ©2021, pp. 125–134. MR 4252300, DOI 10.1090/conm/767/15402
- Lior Bary-Soroker and Gady Kozma, Irreducible polynomials of bounded height, Duke Math. J. 169 (2020), no. 4, 579–598. MR 4072635, DOI 10.1215/00127094-2019-0047
- Lior Bary-Soroker, Dimitris Koukoulopoulos, and Gady Kozma, Irreducibility of random polynomials: general measures, Invent. Math. 233 (2023), no. 3, 1041–1120. MR 4623542, DOI 10.1007/s00222-023-01193-6
- Emmanuel Breuillard and Péter P. Varjú, Irreducibility of random polynomials of large degree, Acta Math. 223 (2019), no. 2, 195–249. MR 4047924, DOI 10.4310/acta.2019.v223.n2.a1
- Sam Chow and Rainer Dietmann, Towards van der Waerden’s conjecture, Trans. Amer. Math. Soc. 376 (2023), no. 4, 2739–2785. MR 4557880, DOI 10.1090/tran/8784
- Francis N. Castro and Carlos J. Moreno, Mixed exponential sums over finite fields, Proc. Amer. Math. Soc. 128 (2000), no. 9, 2529–2537. MR 1690978, DOI 10.1090/S0002-9939-00-05441-1
- David S. Dummit and Richard M. Foote, Abstract algebra, 3rd ed., John Wiley & Sons, Inc., Hoboken, NJ, 2004. MR 2286236
- Leonard Eugene Dickson, A fundamental system of invariants of the general modular linear group with a solution of the form problem, Trans. Amer. Math. Soc. 12 (1911), no. 1, 75–98. MR 1500882, DOI 10.1090/S0002-9947-1911-1500882-4
- Sean Eberhard, The characteristic polynomial of a random matrix, Combinatorica 42 (2022), no. 4, 491–527. MR 4492162, DOI 10.1007/s00493-020-4657-0
- Sean Eberhard and Daniele Garzoni, Conjugacy classes of derangements in finite groups of Lie type, arXiv:2302.01655 [math.GR], 2023.
- Jason Fulman and Robert Guralnick, Bounds on the number and sizes of conjugacy classes in finite Chevalley groups with applications to derangements, Trans. Amer. Math. Soc. 364 (2012), no. 6, 3023–3070. MR 2888238, DOI 10.1090/S0002-9947-2012-05427-4
- Jason Fulman and Robert Guralnick, The number of regular semisimple conjugacy classes in the finite classical groups, Linear Algebra Appl. 439 (2013), no. 2, 488–503. MR 3089699, DOI 10.1016/j.laa.2013.03.031
- Jason Fulman and Robert Guralnick, Derangements in finite classical groups for actions related to extension field and imprimitive subgroups and the solution of the Boston-Shalev conjecture, Trans. Amer. Math. Soc. 370 (2018), no. 7, 4601–4622. MR 3812089, DOI 10.1090/tran/7377
- Michael D. Fried and Moshe Jarden, Field arithmetic, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 11, Springer-Verlag, Berlin, 2008. Revised by Jarden. MR 2445111
- Asaf Ferber, Vishesh Jain, Ashwin Sah, and Mehtaab Sawhney, Random symmetric matrices: rank distribution and irreducibility of the characteristic polynomial, Math. Proc. Cambridge Philos. Soc. 174 (2023), no. 2, 233–246. MR 4545205, DOI 10.1017/S0305004122000226
- Wulf-Dieter Geyer, Field theory, Travaux mathématiques. Vol. XXII, Trav. Math., vol. 22, Fac. Sci. Technol. Commun. Univ. Luxemb., Luxembourg, 2013, pp. 5–177. MR 3204847
- Daniele Garzoni and Eilidh McKemmie, On the probability of generating invariably a finite simple group, J. Pure Appl. Algebra 227 (2023), no. 6, Paper No. 107284, 37. MR 4521747, DOI 10.1016/j.jpaa.2022.107284
- David Goss, Basic structures of function field arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 35, Springer-Verlag, Berlin, 1996. MR 1423131, DOI 10.1007/978-3-642-61480-4
- D. G. Higman, Flag-transitive collineation groups of finite projective spaces, Illinois J. Math. 6 (1962), 434–446. MR 143098, DOI 10.1215/ijm/1255632503
- Nathan Jacobson, Basic algebra. II, 2nd ed., W. H. Freeman and Company, New York, 1989. MR 1009787
- Peter Kleidman and Martin Liebeck, The subgroup structure of the finite classical groups, London Mathematical Society Lecture Note Series, vol. 129, Cambridge University Press, Cambridge, 1990. MR 1057341, DOI 10.1017/CBO9780511629235
- Serge Lang, Algebra, 3rd ed., Graduate Texts in Mathematics, vol. 211, Springer-Verlag, New York, 2002. MR 1878556, DOI 10.1007/978-1-4613-0041-0
- Serge Lang and André Weil, Number of points of varieties in finite fields, Amer. J. Math. 76 (1954), 819–827. MR 65218, DOI 10.2307/2372655
- Gunter Malle and B. Heinrich Matzat, Inverse Galois theory, Springer Monographs in Mathematics, Springer, Berlin, 2018. Second edition [ MR1711577]. MR 3822366, DOI 10.1007/978-3-662-55420-3
- David K. Maslen and Daniel N. Rockmore, Separation of variables and the computation of Fourier transforms on finite groups. I, J. Amer. Math. Soc. 10 (1997), no. 1, 169–214. MR 1396896, DOI 10.1090/S0894-0347-97-00219-1
- Gunter Malle and Donna Testerman, Linear algebraic groups and finite groups of Lie type, Cambridge Studies in Advanced Mathematics, vol. 133, Cambridge University Press, Cambridge, 2011. MR 2850737, DOI 10.1017/CBO9780511994777
- Hugh L. Montgomery and Robert C. Vaughan, Multiplicative number theory. I. Classical theory, Cambridge Studies in Advanced Mathematics, vol. 97, Cambridge University Press, Cambridge, 2007. MR 2378655
- J. E. Nymann, On the probability that $k$ positive integers are relatively prime, J. Number Theory 4 (1972), 469–473. MR 304343, DOI 10.1016/0022-314X(72)90038-8
- Harriet Pollatsek, First cohomology groups of some linear groups over fields of characteristic two, Illinois J. Math. 15 (1971), 393–417. MR 280596
- A. Popov, Probabilistic Galois theory in function fields, Master’s Thesis August 2023, Under the supervision of Dr. Alexei Entin.
- Michael Rosen, Number theory in function fields, Graduate Texts in Mathematics, vol. 210, Springer-Verlag, New York, 2002. MR 1876657, DOI 10.1007/978-1-4757-6046-0
- Tamás Szamuely, Galois groups and fundamental groups, Cambridge Studies in Advanced Mathematics, vol. 117, Cambridge University Press, Cambridge, 2009. MR 2548205, DOI 10.1017/CBO9780511627064
- Helmut Wielandt, Finite permutation groups, Academic Press, New York-London, 1964. Translated from the German by R. Bercov. MR 183775
- Clarence Wilkerson, A primer on the Dickson invariants, Proceedings of the Northwestern Homotopy Theory Conference (Evanston, Ill., 1982) Contemp. Math., vol. 19, Amer. Math. Soc., Providence, RI, 1983, pp. 421–434. MR 711066, DOI 10.1090/conm/019/711066
Bibliographic Information
- Lior Bary-Soroker
- Affiliation: School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- MR Author ID: 797213
- ORCID: 0000-0002-1303-247X
- Alexei Entin
- Affiliation: School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- MR Author ID: 1000427
- ORCID: 0000-0002-4169-7102
- Eilidh McKemmie
- Affiliation: Department of Mathematics, Rutgers University, 110 Frelinghuysen Rd, Piscataway, New Jersey 08854
- MR Author ID: 1444004
- ORCID: 0000-0002-5031-6412
- Received by editor(s): June 3, 2023
- Received by editor(s) in revised form: November 1, 2023, November 3, 2023, and November 3, 2023
- Published electronically: January 9, 2024
- Additional Notes: The first author was partially supported by the Israel Science Foundation grant no. 702/19. The second author was partially supported by the Israel Science Foundation grant no. 2507/19.
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 2231-2259
- MSC (2020): Primary 11R32, 11R09, 12E05, 11R45; Secondary 20G40
- DOI: https://doi.org/10.1090/tran/9098
- MathSciNet review: 4744755