Convergence rate to equilibrium for conservative scattering models on the torus: a new tauberian approach
HTML articles powered by AMS MathViewer
- by B. Lods and M. Mokhtar-Kharroubi;
- Trans. Amer. Math. Soc. 377 (2024), 2741-2820
- DOI: https://doi.org/10.1090/tran/9087
- Published electronically: January 18, 2024
- HTML | PDF | Request permission
Abstract:
The object of this paper is to provide a new and systematic tauberian approach to quantitative long time behaviour of $C_{0}$-semigroups $\left (\mathcal {V}(t)\right )_{t \geqslant 0}$ in $L^{1}(\mathbb {T}^{d}\times \mathbb {R}^{d})$ governing conservative linear kinetic equations on the torus with general scattering kernel $\boldsymbol {k}(v,v’)$ and degenerate (i.e. not bounded away from zero) collision frequency $\sigma (v)=\int _{\mathbb {R}^{d}}\boldsymbol {k}(v’,v)\boldsymbol {m}(\mathrm {d}v’)$, (with $\boldsymbol {m}(\mathrm {d}v)$ being absolutely continuous with respect to the Lebesgue measure). We show in particular that if $N_{0}$ is the maximal integer $s \geqslant 0$ such that \begin{equation*} \frac {1}{\sigma (\cdot )}\int _{\mathbb {R}^{d}}\boldsymbol {k}(\cdot ,v)\sigma ^{-s}(v)\boldsymbol {m}(\mathrm {d}v) \in L^{\infty }(\mathbb {R}^{d}), \end{equation*} then, for initial datum $f$ such that $\displaystyle \int _{\mathbb {T}^{d}\times \mathbb {R}^{d}}|f(x,v)|\sigma ^{-N_{0}}(v)\mathrm {d}x\boldsymbol {m}(\mathrm {d}v) <\infty$ it holds \begin{equation*} \left \|\mathcal {V}(t)f-\varrho _{f}\Psi \right \|_{L^{1}(\mathbb {T}^{d}\times \mathbb {R}^{d})}=\dfrac {{\varepsilon }_{f}(t)}{(1+t)^{N_{0}-1}}, \qquad \varrho _{f}≔\int _{\mathbb {R}^{d}}f(x,v)\mathrm {d}x\boldsymbol {m}(\mathrm {d}v), \end{equation*} where $\Psi$ is the unique invariant density of $\left (\mathcal {V}(t)\right )_{t \geqslant 0}$ and $\lim _{t\to \infty }{\varepsilon }_{f}(t)=0$. We in particular provide a new criteria of the existence of invariant density. The proof relies on the explicit computation of the time decay of each term of the Dyson-Phillips expansion of $\left (\mathcal {V}(t)\right )_{t \geqslant 0}$ and on suitable smoothness and integrability properties of the trace on the imaginary axis of Laplace transform of remainders of large order of this Dyson-Phillips expansion. Our construction resorts also on collective compactness arguments and provides various technical results of independent interest. Finally, as a by-product of our analysis, we derive essentially sharp “subgeometric” convergence rate for Markov semigroups associated to general transition kernels.References
- P. M. Anselone and T. W. Palmer, Spectral analysis of collectively compact, strongly convergent operator sequences, Pacific J. Math. 25 (1968), 423–431. MR 227807, DOI 10.2140/pjm.1968.25.423
- Wolfgang Arendt, Charles J. K. Batty, Matthias Hieber, and Frank Neubrander, Vector-valued Laplace transforms and Cauchy problems, Monographs in Mathematics, vol. 96, Birkhäuser Verlag, Basel, 2001. MR 1886588, DOI 10.1007/978-3-0348-5075-9
- András Bátkai, Marjeta Kramar Fijavž, and Abdelaziz Rhandi, Positive operator semigroups, Operator Theory: Advances and Applications, vol. 257, Birkhäuser/Springer, Cham, 2017. From finite to infinite dimensions; With a foreword by Rainer Nagel and Ulf Schlotterbeck. MR 3616245, DOI 10.1007/978-3-319-42813-0
- Étienne Bernard and Francesco Salvarani, On the exponential decay to equilibrium of the degenerate linear Boltzmann equation, J. Funct. Anal. 265 (2013), no. 9, 1934–1954. MR 3084493, DOI 10.1016/j.jfa.2013.06.012
- Étienne Bernard and Francesco Salvarani, On the convergence to equilibrium for degenerate transport problems, Arch. Ration. Mech. Anal. 208 (2013), no. 3, 977–984. MR 3048598, DOI 10.1007/s00205-012-0608-2
- Armand Bernou and Nicolas Fournier, A coupling approach for the convergence to equilibrium for a collisionless gas, Ann. Appl. Probab. 32 (2022), no. 2, 764–811. MR 4414695, DOI 10.1214/21-aap1696
- Armand Bernou, A semigroup approach to the convergence rate of a collisionless gas, Kinet. Relat. Models 13 (2020), no. 6, 1071–1106. MR 4179249, DOI 10.3934/krm.2020038
- Armand Bernou, Convergence toward the steady state of a collisionless gas with Cercignani-Lampis boundary condition, Comm. Partial Differential Equations 47 (2022), no. 4, 724–773. MR 4417028, DOI 10.1080/03605302.2021.1999975
- Armand Bernou, On subexponential convergence to equilibrium of Markov processes, Séminaire de Probabilités LI, Lecture Notes in Math., vol. 2301, Springer, Cham, [2022] ©2022, pp. 143–174. MR 4461025, DOI 10.1007/978-3-030-96409-2_{5}
- Armand Bernou, Kleber Carrapatoso, Stéphane Mischler, and Isabelle Tristani, Hypocoercivity for kinetic linear equations in bounded domains with general Maxwell boundary condition, Ann. Inst. H. Poincaré C Anal. Non Linéaire 40 (2023), no. 2, 287–338. MR 4581432, DOI 10.4171/aihpc/44
- E. Bouin, J. Dolbeault, L. Lafleche, and C. Schmeiser, Hypocoercivity and sub-exponential local equilibria, Monatsh. Math. 194 (2021), no. 1, 41–65. MR 4200970, DOI 10.1007/s00605-020-01483-8
- Simon Brendle, On the asymptotic behavior of perturbed strongly continuous semigroups, Math. Nachr. 226 (2001), 35–47. MR 1839401, DOI 10.1002/1522-2616(200106)226:1<35::AID-MANA35>3.3.CO;2-I
- Haim Brezis, Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, New York, 2011. MR 2759829, DOI 10.1007/978-0-387-70914-7
- Maria J. Cáceres, José A. Carrillo, and Thierry Goudon, Equilibration rate for the linear inhomogeneous relaxation-time Boltzmann equation for charged particles, Comm. Partial Differential Equations 28 (2003), no. 5-6, 969–989. MR 1986057, DOI 10.1081/PDE-120021182
- Russel E. Caflisch, The Boltzmann equation with a soft potential. I. Linear, spatially-homogeneous, Comm. Math. Phys. 74 (1980), no. 1, 71–95. MR 575897, DOI 10.1007/BF01197579
- José A. Cañizo, Chuqi Cao, Josephine Evans, and Havva Yoldaş, Hypocoercivity of linear kinetic equations via Harris’s theorem, Kinet. Relat. Models 13 (2020), no. 1, 97–128. MR 4063917, DOI 10.3934/krm.2020004
- José A. Cañizo, Amit Einav, and Bertrand Lods, On the rate of convergence to equilibrium for the linear Boltzmann equation with soft potentials, J. Math. Anal. Appl. 462 (2018), no. 1, 801–839. MR 3771276, DOI 10.1016/j.jmaa.2017.12.052
- José A. Cañizo, Pierre Gabriel, and Havva Yoldaş, Spectral gap for the growth-fragmentation equation via Harris’s theorem, SIAM J. Math. Anal. 53 (2021), no. 5, 5185–5214. MR 4312814, DOI 10.1137/20M1338654
- José A. Cañizo and Stéphane Mischler, Harris-type results on geometric and subgeometric convergence to equilibrium for stochastic semigroups, J. Funct. Anal. 284 (2023), no. 7, Paper No. 109830, 46. MR 4534707, DOI 10.1016/j.jfa.2022.109830
- K. Carrapatoso and S. Mischler, Landau equation for very soft and Coulomb potentials near Maxwellians, Ann. PDE 3 (2017), no. 1, Paper No. 1, 65. MR 3625186, DOI 10.1007/s40818-017-0021-0
- R. V. Chacon and U. Krengel, Linear modulus of linear operator, Proc. Amer. Math. Soc. 15 (1964), 553–559. MR 164244, DOI 10.1090/S0002-9939-1964-0164244-7
- Ralph Chill and David Seifert, Quantified versions of Ingham’s theorem, Bull. Lond. Math. Soc. 48 (2016), no. 3, 519–532. MR 3509911, DOI 10.1112/blms/bdw024
- Laurent Desvillettes and Francesco Salvarani, Asymptotic behavior of degenerate linear transport equations, Bull. Sci. Math. 133 (2009), no. 8, 848–858. MR 2569870, DOI 10.1016/j.bulsci.2008.09.001
- Helge Dietert, Frédéric Hérau, Harsha Hutridurga, and Clément Mouhot, Trajectorial hypocoercivity and application to control theory, Séminaire Laurent Schwartz—Équations aux dérivées partielles et applications. Année 2021–2022, Inst. Hautes Études Sci., Bures-sur-Yvette, [2021–2022] ©2021–2022, pp. Exp. No. VIII, 10. MR 4632298
- H. Dietert, F. Hérau, H. Hutridurga, and C. Mouhot, Quantitative geometric control in linear kinetic theory, Preprint, arXiv:2209.09340, 2023.
- Jean Dolbeault, Clément Mouhot, and Christian Schmeiser, Hypocoercivity for linear kinetic equations conserving mass, Trans. Amer. Math. Soc. 367 (2015), no. 6, 3807–3828. MR 3324910, DOI 10.1090/S0002-9947-2015-06012-7
- Randal Douc, Gersende Fort, and Arnaud Guillin, Subgeometric rates of convergence of $f$-ergodic strong Markov processes, Stochastic Process. Appl. 119 (2009), no. 3, 897–923. MR 2499863, DOI 10.1016/j.spa.2008.03.007
- Renjun Duan, Hypocoercivity of linear degenerately dissipative kinetic equations, Nonlinearity 24 (2011), no. 8, 2165–2189. MR 2813582, DOI 10.1088/0951-7715/24/8/003
- Daniel Han-Kwan and Matthieu Léautaud, Geometric analysis of the linear Boltzmann equation I. Trend to equilibrium, Ann. PDE 1 (2015), no. 1, Art. 3, 84. MR 3479064, DOI 10.1007/s40818-015-0003-z
- Klaus-Jochen Engel and Rainer Nagel, One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, vol. 194, Springer-Verlag, New York, 2000. With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt. MR 1721989
- Havva Yoldaş, On quantitative hypocoercivity estimates based on Harris-type theorems, J. Math. Phys. 64 (2023), no. 3, Paper No. 031101, 28. MR 4561882, DOI 10.1063/5.0089698
- Tosio Kato, Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition. MR 1335452, DOI 10.1007/978-3-642-66282-9
- Otared Kavian, Stéphane Mischler, and Mamadou Ndao, The Fokker-Planck equation with subcritical confinement force, J. Math. Pures Appl. (9) 151 (2021), 171–211 (English, with English and French summaries). MR 4265692, DOI 10.1016/j.matpur.2021.04.007
- Tomasz Komorowski, Long time asymptotics of a degenerate linear kinetic transport equation, Kinet. Relat. Models 7 (2014), no. 1, 79–108. MR 3177678, DOI 10.3934/krm.2014.7.79
- Bertrand Lods, On linear kinetic equations involving unbounded cross-sections, Math. Methods Appl. Sci. 27 (2004), no. 9, 1049–1075. MR 2063095, DOI 10.1002/mma.485
- B. Lods and M. Mokhtar-Kharroubi, Convergence to equilibrium for linear spatially homogeneous Boltzmann equation with hard and soft potentials: a semigroup approach in $L^1$-spaces, Math. Methods Appl. Sci. 40 (2017), no. 18, 6527–6555. MR 3742080, DOI 10.1002/mma.4473
- B. Lods and M. Mokhtar-Kharroubi, Convergence rate to equilibrium for collisionless transport equations with diffuse boundary operators: a new tauberian approach, J. Funct. Anal. 283 (2022), no. 10, Paper No. 109671, 100. MR 4470733, DOI 10.1016/j.jfa.2022.109671
- B. Lods and M. Mokhtar-Kharroubi, A new quantitative tauberian approach to long-time asymptotics of perturbed stochastic semigroups, Work in progress.
- Ivo Marek, Frobenius theory of positive operators: Comparison theorems and applications, SIAM J. Appl. Math. 19 (1970), 607–628. MR 415405, DOI 10.1137/0119060
- Sean Meyn and Richard L. Tweedie, Markov chains and stochastic stability, 2nd ed., Cambridge University Press, Cambridge, 2009. With a prologue by Peter W. Glynn. MR 2509253, DOI 10.1017/CBO9780511626630
- M. Mokhtar-Kharroubi, Time asymptotic behaviour and compactness in transport theory, European J. Mech. B Fluids 11 (1992), no. 1, 39–68. MR 1151539
- M. Mokhtar-Kharroubi, Mathematical topics in neutron transport theory, Series on Advances in Mathematics for Applied Sciences, vol. 46, World Scientific Publishing Co., Inc., River Edge, NJ, 1997. New aspects; With a chapter by M. Choulli and P. Stefanov. MR 1612403, DOI 10.1142/9789812819833
- Mustapha Mokhtar-Kharroubi, Spectral properties of a class of positive semigroups on Banach lattices and streaming operators, Positivity 10 (2006), no. 2, 231–249. MR 2237499, DOI 10.1007/s11117-005-0027-9
- Mustapha Mokhtar-Kharroubi, On $L^1$ exponential trend to equilibrium for conservative linear kinetic equations on the torus, J. Funct. Anal. 266 (2014), no. 11, 6418–6455. MR 3192457, DOI 10.1016/j.jfa.2014.03.019
- Mustapha Mokhtar-Kharroubi, On strong convergence to ergodic projection for perturbed substochastic semigroups, Semigroups of operators—theory and applications, Springer Proc. Math. Stat., vol. 113, Springer, Cham, 2015, pp. 89–103. MR 3295777, DOI 10.1007/978-3-319-12145-1_{6}
- Mustapha Mokhtar-Kharroubi, Existence of invariant densities and time asymptotics of conservative linear kinetic equations on the torus without spectral gaps, Acta Appl. Math. 175 (2021), Paper No. 8, 32. MR 4317820, DOI 10.1007/s10440-021-00435-0
- Mustapha Mokhtar-Kharroubi and Jacek Banasiak, On spectral gaps of growth-fragmentation semigroups in higher moment spaces, Kinet. Relat. Models 15 (2022), no. 2, 147–185. MR 4408092, DOI 10.3934/krm.2021050
- Mustapha Mokhtar-Kharroubi, On spectral gaps of growth-fragmentation semigroups with mass loss or death, Commun. Pure Appl. Anal. 21 (2022), no. 4, 1293–1327. MR 4405312, DOI 10.3934/cpaa.2022019
- Katarzyna Pichór and Ryszard Rudnicki, Continuous Markov semigroups and stability of transport equations, J. Math. Anal. Appl. 249 (2000), no. 2, 668–685. MR 1781248, DOI 10.1006/jmaa.2000.6968
- Helmut Schaefer, Some spectral properties of positive linear operators, Pacific J. Math. 10 (1960), 1009–1019. MR 115090, DOI 10.2140/pjm.1960.10.1009
Bibliographic Information
- B. Lods
- Affiliation: Department of Economics and Statistics, Università degli Studi di Torino & Collegio Carlo Alberto, Corso Unione Sovietica, 218/bis, 10134 Torino, Italy.
- MR Author ID: 685939
- Email: bertrand.lods@unito.it
- M. Mokhtar-Kharroubi
- Affiliation: Université de Bourgogne-Franche-Comté, Equipe de Mathématiques, CNRS UMR 6623, 16, route de Gray, 25030 Besançon Cedex, France
- MR Author ID: 200061
- Email: mustapha.mokhtar-kharroubi@univ-fcomte.fr
- Received by editor(s): July 18, 2022
- Received by editor(s) in revised form: October 23, 2023
- Published electronically: January 18, 2024
- Additional Notes: The first author was financially supported by the Italian Ministry of Education, University and Research (MIUR), Dipartimenti di Eccellenza grant 2022-2027 as well as by the de Castro Statistics Initiative, Collegio Carlo Alberto (Torino).
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 2741-2820
- MSC (2020): Primary 82C40; Secondary 35F15, 47D06
- DOI: https://doi.org/10.1090/tran/9087
- MathSciNet review: 4744756